
www.manaraa.com

Chapter 1

INTRODUCTION

1.1 Problem Statement

Today, most security requirements, such as access and flow control policies, are

considered only after the completion of functional requirements because security

requirements are considered non-functional requirements, which are difficult to express,

to analyze, and to test, and because languages used to specify access and flow control

policies (such as FAF [JSSSOl], PERMTS [C002], Author-X [BBC+OO] and POL

[LBN99]) are separate from the languages used to model functional requirements (such

as UML) during the software development life cycle. Consequently, security

considerations may not be properly engineered during the software development life

cycle, and less secure systems may result.

1.2 Thesis Statement

Oevanbu and Stubblebine [OSOO] challenged the academic community to adopt and

extend standard modeling languages such as UML to include security-related features. I

accepted this challenge by showing that:

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Chapter 1

INTRODUCTION

1.1 Problem Statement

Today, most security requirements, such as access and flow control policies, are

considered only after the completion of functional requirements because security

requirements are considered non-functional requirements, which are difficult to express,

to analyze, and to test, and because languages used to specify access and flow control

policies (such as FAF [JSSSOl], PERMTS [C002], Author-X [BBC+OO] and POL

[LBN99]) are separate from the languages used to model functional requirements (such

as UML) during the software development life cycle. Consequently, security

considerations may not be properly engineered during the software development life

cycle, and less secure systems may result.

1.2 Thesis Statement

Oevanbu and Stubblebine [OSOO] challenged the academic community to adopt and

extend standard modeling languages such as UML to include security-related features. I

accepted this challenge by showing that:

www.manaraa.com

2

• It is possible to incorporate access and flow control policies with other functional

requirements during the early phases of the software development life cycle by

extending the Unified Modeling Language (UML) to include security features as

first class citizens.

• It is possible to develop tools that help software analysts and designers to verifY

the compliance of the access and flow control requirements with with policy

before proceeding to other phases of the software development process.

I substantiated my claim by:

I. Extending the metamodel of UML to incorporate aCCeSS and flow control

policies in the design.

2. Enhancing and extending the Use Case model by providing a unified

specification of access and flow control policies using object constraint

language (OCL).

3. Designing a formal framework to detect inconsistency, incompleteness, and

application-definable conflict among access control policies.

4. Designing a formal framework that verifies the compliance of information

flow requirements with information flow control policies.

5. Integrating both frameworks to analyze both access and flow control policies

at the same time.

www.manaraa.com

3

1.3 Significance of Contributions

Access and flow control policies in software security have not been well integrated with

functional specifications during the requirements engineering and modeling phases of the

software development life cycle. Security is considered to be a non-functional

requirement (NFR) [CNY+OOj. Such requirements are difficult to express, analyze, and

test; therefore, they are usually evaluated subjectively. Because NFRs tend to be

properties of a system as a whole [CNY +00, NEOOj" most security requirements are

considered after the analysis of the functional requirements [DSOOj. The consequences of

ignoring NFR are low-quality and inconsistent software, unsatisfied stakeholders, and

more time and cost in re-engineering [CNY+OOj. Therefore, Inlcgrdllng security into the

software life cycle throughout all its phases adds value to the outcome of the process.

It is important to specify access control policies precisely and in sufficient detail, because

ambiguities in requirements specifications can result in erroneous software [GW89j. In

addition, careful consideration of requirements - including NFRs - will result in reducing

project cost and time, because errors that arc not detected early can propagate into the

other phases of the software development life cycle, where the cost of detection and

removal is high [DSOOj [BoeSI]. By analyzing large projects in IBM, GTE, and TRW,

Boehm [Boe8lj computed the cost of removing errors in general made during the various

phases of the development life cycle, as shown in table I.

www.manaraa.com

Table 1: Relative Cost to Correct an Error

Phase where the error is tOllnd

Requirements

Design

Code

Development test

Acceptance test

Operation

Cost ratio

3-6

to

15-35

40-75

30-1000

4

In UML-based software design methodologies, requirements are specified using Use

Cases at the beginning of the life cycle. Use Cases specify actors and their intended usage

of the envisioned system. Nevertheless, a Use Case is written in natural language, which

lacks the precision and specification of security [DSOO]. Therefore, there is a need to

provide a unified language for representing security features, such as access and flow

control policies [DSOO, CNY +00], in the early phases of the software development life

cycle. This language must allow software developers to model access control policies in a

unified way and it must be compatible with other requirements modeling languages.

In addition, there is a need to verify the compliances of security requirements with the

security policies before proceeding to other phases of the software development life cycle

[NEOO, Pfl98, RusO I]. I used Logic as the underlying language because it is potentially

amenable to automated reasoning [NEOO, RusOI].

My dissertation partially fulfills Devanbu and Stubblebine's challenge [DSOO], because

totally satisfying their requirement has to consider all aspects of security in all phases of

the software development life cycles. My contributions meet the challenge in the

www.manaraa.com

5

requirements, analysis and design phases only by specifying and verifying access and

flow control policies there.

1,4 Summary of Contributions

My dissertation introduced several contributions that assist software developers to specify

and analyze access and flow control policies during the first three phases of the software

development process, requirement specification, analysis, and design phases. The

following summarize my contributions:

6. I extended the UML Metamodel in a way that allows systems designers to model

dynamic and static access control policies as well as flow control policies in a

unified way. Thc extension provides a better way to integrate and impose

authorization policies on commercial off-the-shelf (COTS) and mobile code. I

showed how this extension allows non-security experts to represent access control

models, such as Role-Based Access Control (RBAC) and workflow policies, in an

uncomplicated manner.

7. I extended the Use Case model to specify access control policies precisely and

unambiguously with sufficient details in the UML's Use Case. I added to Use

Cases by using something analogous to operation schemas [SSOO], which I called

access control policy schemas. The extension employs the Object Constraint

Language (OCL) [OCLOI], which is more formal than the existing Use Case

language (natural language) for specifying access and flow control policies.

www.manaraa.com

8. I developed a framework called Auth UML that formally verifies the compliance

of access control requirements with the access control policies during the

requirement specification and analysis phases using Prolog style stratified logic

programmmg.

9. I developed a framework called FlowUML to verify the proper enforcement of

information flow control policies on the requirements.

10. I incorporated the analysis of both access and flow control requirements by

integrating both AutbUML and FlowUML. The incorporation of both frameworks

improves the analysis and detection of improper access and flow control

requirement.

Based on my work in this dissertation I published several papers.

1.5 Organization of the Dissertation

6

Chapter 2 summarizes the literature that is related to my work, it also analyzes and

compares the work with what I presented in this dissertation. Chapter 3 summarizes

background works that are used as bases for my extensions, such as the UML, F AF and

Operation Schemas. Chapter 4 presents the extension of the UML Metamodcl to design

access and flow control policies, and it shows the application of the extension on

different existing access control models. Chapter 5 presents the extension of the Use Case

to formally specifY access and flow control requirements, and it shows the extension of

the Use Case uldgrdlll and how to analyze the access control requirements visually.

Chapter 6 introduces AuthUML, a framework to verify and detect improper access

www.manaraa.com

7

control requirements. Chapter 7 presents the FlowUML, a framework that analyzes

information flow control requirement and detects violation of information flow control

policies. Chapter 8 incorporates the analysis of both AuthUML and FlowUML and

produces a coherent framework to verify both access and flow control requirements.

Finally, summary of my contributions and discussion of future research are presented in

chapter 9.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 2

LITERATURE REVIEW

Several new papers have been published in this area; those works concentrate on different

aspects of security features and software development phases. However, there are some

drawbacks in those works that need to be improved; further, some additional issues need

to be addressed.

There are several aspects of security that need to be integrated into the software

development proeess such as access control policies, flow control policies,

authentication, integrity, and encryptions. Likewise, there are different phases of software

development such as requirements specification, analysis, design, implementation, and

testing, that require security to be integrated with them for better secure software

systems.

In this dissertation, I have focused on five aspects of integrating access and flow control

policies during requirement engineering. First, I extended the UML metamodel to allow

the proper specification of access and flow control policies. Second, I extended the Use

Case model to formally specify access and flow control policies. Third, I developed a

framework to verify the access control requirements. Fourth, I developed a framework to

verify the flow control requirements. Both frameworks detect improper access and flow

8

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Chapter 2

LITERATURE REVIEW

Several new papers have been published in this area; those works concentrate on different

aspects of security features and software development phases. However, there are some

drawbacks in those works that need to be improved; further, some additional issues need

to be addressed.

There are several aspects of security that need to be integrated into the software

development proeess such as access control policies, flow control policies,

authentication, integrity, and encryptions. Likewise, there are different phases of software

development such as requirements specification, analysis, design, implementation, and

testing, that require security to be integrated with them for better secure software

systems.

In this dissertation, I have focused on five aspects of integrating access and flow control

policies during requirement engineering. First, I extended the UML metamodel to allow

the proper specification of access and flow control policies. Second, I extended the Use

Case model to formally specify access and flow control policies. Third, I developed a

framework to verify the access control requirements. Fourth, I developed a framework to

verify the flow control requirements. Both frameworks detect improper access and flow

8

www.manaraa.com

9

control requirements as early as possible during the software proccss. The following

scctions summarize the literatures related to cach aspect.

2.1 Extending the UML Metamodel and Use Case Model

Lodderstedt el al. [LBD02] proposed a methodology to model access control policies and

integrate them into a model-driven software development process. The work was based

on RBAC as a security model. My work is differs from [LBD02] by concentrating on

specifying dynamic access control policies (e.g. dynamic separation of duty) and

workflow as well as static access control policies. Furthermore, I focused on dynamic

design modeling while Lodderstedt's focus was on static dC>lgn model. Also, my

prospective vicw of enforcing constraints is from the flow view not trom the static view.

There are several issues missing from the work of Lodderstcdt el al. First, history-related

constraints cannot be modeled with Lodderstedt' s method. Second, the metamodeI is not

flexible enough to model all access control policies, because it is based on RBAC only.

Third, the metamodel cannot restrict people in senior roles from performing certain junior

operations and it cannot specify conflict among users, operations, or roles.

Fernandez-Medina e/ al. [FPSOl] introduced a language called Object Security constraint

Language (OSCL). OSCL extends the Object Constraint Language (OCL) [WK99] to

specify security constraints to represent multi-level security systems. Also, Fernandez

Medina el al. in [FMM+02] proposed an extension to the Use Case and Class models of

the UML. The extensions of Use Case diagram which they introduced were stereotypes:

«safe-UC» and «accredited -actor» as an indication of a secure Use Case and

www.manaraa.com

10

authorized actor. Their work is focused on database security and shows how to model

mult!le\el security on the static diagram such as Class diagram by introducing tagged

values to classes, attributes, operations, and association ends where those tagged values

indicate the security level of the element. However, this extension did not represent

dynamic authorization and workflow policies. Also, the extension was limited to

multilevel security model. Finally, the extension did not address the type of authorization

that is granted to the accredited actor, nor the integrity constraints associated with such

authorizations.

Brose el al. [BKL02] extended the UML to support the automatll generation of the

access control policies to configure a CORBA-based infrastructure for View-based access

control. It stated permissions and prohibitions of accessing system's objects (read, write,

exccutc ... etc) explicitly by writing notes that are attached to actors in the Use Case

diagrams. However, their work was based on static specification of access policies but it

could not model dynamic access control policies such as Dynamic Separation of Duty nor

it could enforce some flow requirement such as the order of operations in a specific

workflow systems. Although, that work covered most parts of the software development

life cycle, it did not integrate access control policies in the interaction diagrams such as

the Sequence diagram, and that what I presented in this dissertation. In addition, the

specification language of that work was natural language which is imprecise. Therefore, I

used the OCL to specify the constraints more precisely. Finally, that work considered role

hierarchies, but no propdgJtlon or conflict resolution policies have been addressed for the

inherited authorizations.

www.manaraa.com

II

Jurjens's work in [JurOl] extended the UML to integrate standards concepts from formal

methods regarding multi-level secure system and security protocols. His work was based

on Mandatory Access Control, as in [FPSOl] [LBD02], limiting the number of access

control policies that can be specified using that extension.

Koch and Parisi-Presicce proposed in [KPOO] how to integrate access control policies

using existed UML diagrams (Class and Object diagrams). Both their work and mine

share the importance of specifYing access control constraints by using the OCL.

However, my extension focuses more on the constraints that is why I introduced a

constraint repository called the Security Policy Constraint (SPC). Also, my work focus

more on specifYing the dynamic access control policies by introducing the necessary

repository for Conflict sets, History logs, Business Task. In addition, their work is based

on static UML diagram (Class and Object diagrams) while my work relies on interaction

diagram (Sequence diagram). They proposed to verifY the coherent of access control

specification by using the graph-based formal semantics while I used logic-based rules.

Shin and Ahn work in [SAOO] modeled RBAC in the UML notations from three views:

static, functional and dynamic view. Their work focal point was representing RBAC in

the UML but not how to incorporate authorization models as RBAC in a real secure

application design. Although, the work models constraints that are imposed on user, role,

session and permission, the work did not provide more fine-grained specification of

constraints needed to design dynamic authorization policies.

Ahn and Shin specified in [ASOl) role-based authorization constraints using OCL. The

work discussed several authorization constraints then presented it by OCL. However, the

www.manaraa.com

12

work did not show how to represent role-based authorization constraints using OCL and

how to model those constraints using the UML diagrams that helps developers to

integrate those constraints in the design phase.

Fernandez and Hawkins proposed in [FH97] an extension to the Use Cases. The

extension was by means of a stereotype that states the access constraints. In addition, they

proposed an approach to generate rights for roles. That work did not address

complications arising out of hierarchies and how to resolve access control conflicts.

Ray et al. [RLK +03] proposed a technique to model and compose RBAC and MAC using

the UML. Also, [RLK+03] showed how to identifY conflicts arising due to such

compositions. However, they do not address writing and enforcing access control

constraints in detail as done in [AgW03]. That work of [RLK+03] focused on

representing access control model but not representing access control constraints.

Therefore [RLK +03] could be classified as a step towards integrating RBAC and MAC in

the UML rather than addressing integrating general access control policies using the

UML.

Operation schemas introduced by Sendall and Strohmeier [SSOO] enriched Use Cases by

introducing conceptual operations and specifying their properties using OCL syntax.

Operation schema specifies operations that apply to the whole system to be taken as one

entity. One of the advantages of operation schemas is that they can be directly mapped to

collaboration diagrams that are used later in the analysis and design phases of the

software development life cycle. I extended that work to express access and flow control

policies in the requirement phase.

www.manaraa.com

I J

2.2 Analyzing Access Control Requirements

Ahn and Sandhu purposed in [ASOO) a formal language called RCL2000 for specifying

role-based authorization constraints. It identified useful role-based authorization

constraints such as prohibition and obligation constraints using RCL2000 but its main

users arc security policy designers and security researchers who need to understand the

organization objectives. RCL2000 did not address state or time nor it specified history

based separation of duty. Also, RCL2000 is not designed to be used in the software

requirements and analysis. In contrast, I developed a formal language that is useful

during the software development to detect inconsistency, incompleteness and conflicts

among access control requirements.

In the area of access control enforcement language. Brose [BroOO) presented an access

control language that allows security administrators to specify access control policies in

CORBA. However, the lang\ldg~ llid not detect inconsistency or conflict of access control

policies.

There are several access control mechanisms such as FAF [JSSSOl], PERMIS [C002)

and Author-X [BBC+OO). However, the FAF IS d,ttcrent from others because it addresses

three important issues: I) propagation of authorization, 2) managing conflicts between

positive and negative, 3) providing a final and unique access control decision (positive or

negative) for each request. Moreover, FAF docs not bind each issue to a specific policy

but leaves the choice of policy open - resulting in a more flexible access control model. It

provides the system security officer with rules that can enforce authorizations, derived

authorizations, and conflict resolution and integrity constraints checking.

www.manaraa.com

14

F AF is not designed to be used during the software development, rather, it is designed to

be used in real-time checking of system calls. I presented a framework called AuthUML

that advances the application of F AF to the requirements specification phase of the

software development life cycle. Therefore, AuthUML is a customized version of F AF

that is to be used in requirements engineering. Therefore, AuthUML uses similar

components of F AF with some modification in the language and the process to suit the

Use Case model used in UML. Because FAF specifies authorization modules in

computing systems, FAF is invoked per each authorization request. Contrastingly,

AuthUML is to be used by requirements engineers to avoid conflicts and incompleteness

of accesses. Therefore, while FAF is used frequently to process each access control

request during execution, AuthUML is to be used less frequently during the requirements

engineenng phase to analyze the access control requirements.

Koch and Pansi-Presicce presented in [KP03] an approach of model-driven to specify

access control policies in the analysis phase of the software development life cycle. They

showed how to derive access control requirements models from functional models. The

access control model is represented by graph-based formal semantic which allow the

verification of security constraints. However, my work is based on formal logic instead of

graph-based which it is potentially amenable to automated reasoning that is useful in

analysis [RusOI] [NEOO].

www.manaraa.com

15

2.3 Analyzing Flow Control Requirements

Although, information flow has a rich publication history, most papers concentrated on

designing newer and richer flow control models. For example, based on the discretionary

access control model, Samarati et al. [SBC+97] described a model that prevents

information leakage by Trojans. Also, Bertino et al. [BA99] presented a logic

programming based specification framework to enforce workflows constraints. Although

important, these papers did not address flow policies and verifications techniques that go

hand in glovc with software design life cycle models that use UML.

At the other end, Myers [Mye99] presented IFlow, an extension to Java that adds

statically checkable flow constraints. However, JFlow can be used during the

implementation phase while FlowUML which is the framework I presented is to be used

during the requirements, design and analysis phases of the software development life

cycle. JFlow concerns more on controlling the information flow between the variables

and objects in the programming language.

FlexFlow of Chen et a1. [CWJ03] is logie based flexible flow control framework to

specify data-flow, workflow and transaction systems. Although Flow 11 ~11 and FlexFlow

analyze and prevent unauthorized flows, FlowUML is different from FlexFlow in many

aspects: I) FlexFlow is meant to be used at the execution time, while FlowUML is

intended to be executed earlier in the development process to prevent unsafe information

flow from getting implemented, 2) FlowUML looks at validating information flow

control from the software engineering perspective view rather than the system

www.manaraa.com

16

perspective view, 3) FlowUML add the time of flow and the initiator of flow as factors to

analyze information flow that are absent in FlexFlow.

2.4 Summary

In the area of integrating access control policies into the design phase of the software

development life cycle, most of the current works - I know- are built to specify static

policies but not dynamic. Also, they are designed to fit with a specific access control

model such as RBAC or MAC, but not general enough to express other access control

policies or other access control model. In the area of analyzing access and flow control

policies during the analysis phase, to the best of my knowledge, I am not aware of work

that combines the analysis of both access and flow control policy during the early

software development life cycle.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 3

BACKGROUND

This chapter summarizes the background used during the dissertation, e.g., the Unified

Modeling Language (UML), Flexible Authorization Framework (FAF) and Access

control models.

3.1 Unified Modeling Language

Modeling is the blueprint of software applications. It is used to guarantee that all business

requirements are considered before starting coding. Also, modeling is used to analyze

system's requirements and their consequences. In the 1980s and 1990s, several object

oriented analysis and design methods introduced with different notations. Therefore,

there was a need for standardizing modeling notations. The outcome was the Unified

Modeling Language (UML) [OMGOlj.

The following subsection will draw a brief background of the UML and some of its

components that are related to my work.

17

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Chapter 3

BACKGROUND

This chapter summarizes the background used during the dissertation, e.g., the Unified

Modeling Language (UML), Flexible Authorization Framework (FAF) and Access

control models.

3.1 Unified Modeling Language

Modeling is the blueprint of software applications. It is used to guarantee that all business

requirements are considered before starting coding. Also, modeling is used to analyze

system's requirements and their consequences. In the 1980s and 1990s, several object

oriented analysis and design methods introduced with different notations. Therefore,

there was a need for standardizing modeling notations. The outcome was the Unified

Modeling Language (UML) [OMGOlj.

The following subsection will draw a brief background of the UML and some of its

components that are related to my work.

17

www.manaraa.com

18

3.1.1 Overview ofthe UML

The UML is defined according to Booch et a1. [BRJ99] as follow: "The UML is a

language for visualizing, specitying, constructing and documenting the artifacts of a

software-intensive system."

The UML was first devcloped by Grady Booch, Jim Rumbaugh and Ivar Jacobson. In

1997, the UML has been submitted to and approved by the Object Management Group

(OM G) [OM GO I] as the OMG standard for object-oriented modeling. Since then, many

versions of the UML have been developed, and the current version is 1.5. OMG's

Revision Task Force (RTF) is working on version 2.0.

An important fact is that the UML is not a method, but a modeling language. Most

methods consist of a modeling language and a process. The process consists of steps

while the modeling language is a collection of notions that the method uses to convey the

requirement to a design [BoeSI].

The UML has several advantages:

• The UML is an expressive langLl"ge with a rich set of notations that lets

de'lf!Jl~r model any type of applicatIOn that runs on any kind of hardware,

programming languages or operating systems. The UML has multiple views

to represent requirements and specifications.

• The UML is beneficial for communication. It is a unified language that allows

one to communicate conceptual modeling with others clearly. It is between

natural language, which is too imprecise, and code that is too detailed.

www.manaraa.com

• The UML is extensible. The well-defined extension mechanisms that the

UML has presented provide the possibility of extending the UML to facilitate

new domains such as security and performance. The extension constructs are

stereotypes, tagged values and constraints. Stereotypes are used to define new

types of model elements or building blocks. Tagged values extend the

metamodel types by adding new attributes. Constraints extend the semantics

of the model element by adding or modi tying rules.

There are twelve kinds of diagrams in the UML that are categorized as follow:

• Structural Diagrams: These diagrams represent the static part of the model

that is conceptual or physical. The structural diagrams include the Class

Diagram, Object Diagram, Components Diagram and Deployment Diagram.

• Behavioral Diagrams: These diagrams represent the dynamic part of the

model over time and space. The behavioral diagrams contain: the Use Case

Diagram, Sequence Diagram, Activity Diagram, Collaboration Diagram and

Statcchart Diagram.

• Model Management Diagrams: These are the organizational parts of the

UML. They include Packages, Subsystems and Models.

3.1.2 Use Case

19

Use case is a behavioral diagram used to model requirements at the beginning of the

software development life cycle. According to Booch el al. [BRJ99] "A use case is a

www.manaraa.com

20

description of a set of sequence of actions, including variants that a system performs to

yield an observable result of value to an actor"

Use cases specify actors and their intended usage ofthc envisioned system. Such usage

usually, but not always - is specified in terms of the interactions between the actors and

the system, thereby specifying the behavioral requirements of the proposed software. The

scenario contains a normal scenario, and alternatives. The actor represents a coherent set

of roles that the users of a use case exercise during the interaction. An actor may be a

human, a hardware device or an cxternal system that needs to interact with the system

under design.

Use cases are written In an informal natural language that is easy for modelers and

stakeholders to use and to understand. There is no standard on how to develop the use

case or to what degrce a modeler should go. Thus, different people may write varying

degrees of details for the same use case. A use case may carry a high level goal such as

the whole system goal, or a low level operation. The modeler is free on which degree of

decomposing. A use case is a textual description that may include - but is not limited to:

actors, preconditions, post conditions, normal scenarios and abnormal or exceptional

scenarios. Figure 3.1 shows an example of a usc case description:

In contrast, a use case diagram visualizes actors and their relationships with use cases. A

use case diagram is essential for visualizing, specifying, and documenting the behavior of

an element. It provides a perspective view of the system interaction. See Figure 3.2 for an

example of a use case diagram.

www.manaraa.com

21

Use Case Name: Sign a check

Actor: Manager

Precondition: The check must be issued before and not by the same user.

Normal Scenario: Manager searches for checks to be signed, and makes sure that

the check's amount is available at the Bank and verify the check's amount

with the invoice total amount. If all conditions are correct then the

Manager sign the check.

Abnormal Scenario: if the check's amount is not available at the company's bank

account, then the manager postpone the signature of that check.

If the check's amount is different from the invoice's total amount then

Manager send it to the Clerk for correction.

Postcondition: check is signed and amount is detected form the company's bank

account.

Figure 3.1. Use Case Description

Write a check

Clerk

Sign a check

Manager

Figure 3.2: Use Case Diagram

www.manaraa.com

22

The structure of the use ease can vary. There arc three relationships that can be used: an

include relationship can be used to reduce the duplications of similar behavior across

more than one use case. An extend relationship can be used when describing a variation

on normal behavior in another use case, i.e., splitting the normal scenario from the

variation scenarios. A generalization relationship can be used when two use cases do the

same work, but one of them does more (i.e. inheritance); it is just like the generalization

among classes.

I =tll= I I AXCbflDQA I IXACftjyAo(I
iJ: lifl recoive.-

h: dial tone

c: dial dirJit

d: ,-oute

rlnginq tonE=! phone rings

I
i'ln~\Ner phonE=!

stop ton8 ~lop ,.inging J
Figure 3.3. An Example of Sequence Diagram

3.1.3 Sequence Diagram

A sequence diagram is a behavioral UML diagram. The interaction diagrams describe

how groups of objects collaborate in a particular behavior. For each use case, modelers

need to specify how objects that participate in the use case interact with each other to

achieve the goal of the use case. Sequence diagram shows the sequence of messages -

www.manaraa.com

23

ordered with regard to time - between objects. See Figure 3.3 for an example of a

sequence diagram taken from [OMGOlj.

3.1.4 Object Constraint Language

A writing constraint is necessary because not all constraints can bc drawn in the UML.

The constraint must be relatively easy for a software developcr to write and read. Also, it

must be precise enough to prevent ambiguities and imprecision. A natural langudge "

easy to read and write but it is imprecise. On the other hand, formal langu"gc, are

precise, but they require a strong mathematical background. oeL is based on basIc set

theory and logic and it is intended to be used by the software developers. OeL can be

used to specify invariants, preconditions, postconditions and other kinds of constraints in

the UML [WK99].

oeL employs the design by contract principle, where modelers can use OeL expressions

to specify the pre- and postconditions of operations on all classes, interfaces, and types.

OeL is an expression language where it has no side effect where it returns a value, but

cannot change any values. OCL is a typed language. To be well fonncd, OeL

expressions must obey the type conformance rules of the language. OeL provides

elementary types, e.g., Boolean, Integer, Set, Bag, and Sequence, etc. According to the

OMG's OeL specification ofOCL [OeLOlj, OeL can be used to:

• Specify invariants on classes and types in the class model.

• Specify type invariant for Stereotypes.

• Describe pre- and postconditions on Operations and Methods.

www.manaraa.com

24

• SpecifY constraints on operations.

• Describe Guards.

• Function as a navigation language.

3.2 Flexible Authorization Framework

The Flexible Authorization Framework (FAF) of Jajodia et al. [JSSSO I] is a logic-based

framework to specifY authorizations in the form of logical programming rules. It uses a

Prolog style rule base to specify access control policies that arc used to derive

permissions. It is based on four stages that are applied in a sequence, as shown in Figure

3.4. In the first stage of the sequence, some basic facts, such as authorization subject and

object hierarchies (for example, directory structures) and a set of authorizations along

with rules to derive additional authorizations, are given. The intent of this stage is to use

structural properties to derive permissions. Hence, they are called pi 01l<lgullUn policies.

Although propagation policies arc flexible and expressive, they may result in over

specification (i.e .• rules could be used to derive both negative and positive authorizations

that may be contradictory). To avoid conflicting authorizations, the framework uses

conflict resolution policies to resolve conflicts, which comprises the second stage. At the

third stage, decision policies are applied to ensure the completeness of authorizations,

where a decision will be made to either grant or deny every access request. This is

necessary, as the framework makes no assumptions with respect to underivable

authorizations, such as the closed policy. The last stage consists of checking for integrity

constraints, where all authorizations that violate integrity constraints will be denied. In

www.manaraa.com

25

addition, FAF ensures that every access request IS either honored or rejected, thereby

providing a built-in completeness property.

Authonzaoon t ',M,
HIStory Table

1

f\ I

'I' L' \1 t
grantedl

(0",+.)

I
propagatio~ I Conflict resolutIon ~cision Policy Il Integrity

I
denied

Policy . Policy I Constraints

Figure 3.4. FAF System Architecture

3.3 Access control policies

Organizations have a set of policies to maintain their goals. One important policy is the

access control policies. Access control policies bind the actions or activities that a

legitimate user of a computer system can execute [SS94]. They protect information from

unauthorized access.

www.manaraa.com

26

3.3.1 Discretionary Access Control

Discretionary access control (DAC) restricts the access of subject to object based on the

subject's identity and authorization. Thc object's owner at his/her discretion allows or

disallows other subject to access the object.

It is a flexible model that has been adapted widely by commercial and industrial systems.

However, DACs do not control the usage of information after it has been legitimately

accessed. That may lead to low assurance of flow of information. For example, a subject

that is authorized to read the data of an object can write that object's data to another

object that allows subjccts who are not authorized to read the first object to read the

second object's data.

3.3.2 Mandatory Access Control

Mandatory Access Control (MAC) restricts the access of subject to object on the basis of

classification of subjects and objects in the system. All objects are labeled with levels of

sensitivity and all users have clearances that allow them to access objects according to the

level of the objects. Flow of information is controlled in MAC-based systems by

preventing information read from a high-level object to flow to a low-level object. MAC

is widely used in military and government systems.

www.manaraa.com

27

3.3.3 Role-based Access Control

In RBAC, the central issue is roles, which are absent in other two access control models.

Role-based access control (RBAC) [SCFY96] governs the access of subject to object

based on the role that the subject assumes during execution.

Figure 3.5 depicts the RBAC model. A user can be a human being, a process or a device.

A role is a job function or title within the organization that describes the authority and

responsibility conferred on a user assigned to the role. Permission is an approval of a

particular action on an object. Roles arc structured in a partial order relationship or

hierarchy. A senior role inherits all permissions of its junior role. Each role has a set of

permissions that allow the role to complete its job or function. A user must assume a role

by invoking a session to perform the role's job. A user can be a member of more than one

role and a role can include more than one user.

Role Hierarchy

.... ",""

Users USN ASSignment Roles ... Permission Assignment.... Permissions

Constrainls

Sessions

Figure 3.5. Role-based Access Control Model

www.manaraa.com

RBAC has several benefits [SCFY96]:

o Authorization management: RBAC breaks the authorization into users, roles

and permissions. This division cases the management of autborization, i.e.,

invoking and revoking a user from a job is a straightforward step of modifying

the user assignment relationship.

o Hierarchal roles: another simplification of authorization management is the

hierarchal relationship among roles. It is a relation of generalization!

specifications where a senior role inherits all the permissions of its junior role.

o Least privilege: only the permissions required for the task performed by the

user in the role are assigned to the role. Least privilege principle reduces tbe

danger of damage that may be result from errors or intruders masquerading as

legitimate users.

o Separation of duties: completing a critical task needs tbe invocation of

mutually exclusive roles. It prevcnts errors and frauds [CW87]. An example

of mutual exclusive roles is the account payablc manager and thc purchasing

manager; a user must not assume both roles. There are two major types of

separation of duties: static and dynamic.

28

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 4

EXTENDING THE UML METAMODEL

As the UML becomes the de-facto langu<lge for software design, it is important to have a

sufficiently rich linguistic structure 10 model security specifications accurately. This

chapter presents such an extension to the UML to specify dynamic access control policies

in the design phase by extending the UML metamodel with a security policy specification

and enforcement module, a log of method call histories and business tasks. This chapter

shows that it is possible to specify access and flow control policies using the elements of

the UML.

The extension of the metamodel is not a new access control model, but rather a set of

related clements necessary to model existing access control models in the UML.

Therefore, such elements can be incorporated differently for each access control model.

An advantage of this work is the ability to enforce dynamic access control and flow

control policies with the UML. These aspects of security cannot be expressed in static

UML diagrams. Thus, I model them as constraints over interaction diagrams. In addition,

I also focus on flow constraints using the industry standard, OCL.

29

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Chapter 4

EXTENDING THE UML METAMODEL

As the UML becomes the de-facto langu<lge for software design, it is important to have a

sufficiently rich linguistic structure 10 model security specifications accurately. This

chapter presents such an extension to the UML to specify dynamic access control policies

in the design phase by extending the UML metamodel with a security policy specification

and enforcement module, a log of method call histories and business tasks. This chapter

shows that it is possible to specify access and flow control policies using the elements of

the UML.

The extension of the metamodel is not a new access control model, but rather a set of

related clements necessary to model existing access control models in the UML.

Therefore, such elements can be incorporated differently for each access control model.

An advantage of this work is the ability to enforce dynamic access control and flow

control policies with the UML. These aspects of security cannot be expressed in static

UML diagrams. Thus, I model them as constraints over interaction diagrams. In addition,

I also focus on flow constraints using the industry standard, OCL.

29

www.manaraa.com

30

Most initiatives proposed by researchers toward tnlcgrd(llIg security into the design of

systems lack the representation of the dynamic access control and workflow policies.

Their approaches are focused on static access control policies that can be modeled using

static diagram. Dynamic access control policies rely on system states and other histories

to authorize systems' users. For example, Dynamic Separation of Duty principles rely not

on user's privileges, but also on cxecution history of operations.

The reminder of this chapter is organized as follows. Section 4.1 presents an example to

be used during the chapter to show the features of the new Metamodel. Section 4.2

presents the new Metamodel. Section 4.3 shows how to apply the new metamodel

extension to the running example. Section 4.4 presents three case studies of existed

access control model and describes how to represent those models using the new

Metamodel.

4.1 Running Example

This examplc demonstrates the application of the extension. It is based on RBAC, and it

is about a typical purchasing process. As shown in Figure 3.1, it consists of three use

cases: Record invoice arrival. verify invoice validity and authorize payment that is

ordered as shown in Figure 4.2.

www.manaraa.com

31

Purchasing

§~---+-- . . - -(~ Record invoice arrival __ =)
Clerk

~ Venfy invoice validity

purChaSjl\fficer

(Authorize payment - -')
------ ----"

Supprvlsor

Figure 4.1. Use Cases for the Purchasing Process

The example requires different types of authorization policies:

L Required Sequence of operations where each use case (except the first) has a

prerequisite action, as shown in Figure 42, For example, Authorize payment

cannot start until verifY invoice validity is complete,

2, Role Restrictions where each operation can only be executed by a particular rok For

example, the Verifo invoice validity can be invoked only by the Purchasing Officer

role, However, the Purchasing Officer role is a part of a role hierarchy where lower

roles inherit higherrole permissions [SCFY96]. Therefore, the Supervisor role is

allowed to execute the Verifo invoice validity, because (s)he inherits the permission of

the Purchasing Officer role, Nevertheless, this is not always preferred in real world

scenarios, Therefore, there should be a way to explicitly restrict certain roles.

www.manaraa.com

32

,
/ :/ I Remd I Venfy Ic- AuthOrizJ

I. invoice arrival ,I inVOices payment
\ validity , , -- - /

,0 <p Ii- h

¢;\ ~ff b
Clerk

Purchasing Officer supervisor

Figure 4.2. Sequencing of Purchasing Process Workno",

3. Dynamic Separation of Duty policy states that no user is allowed to perform all- or

a specified subset - of the three operations on the same invoice, in order to avoid

fraud. For example, any actor that is allowed to record the arrival of invoices must not

be allowed to verify the validity of the same invoice. In my model, it is possible to

enforce finer dynamic access control policies by restricting not just the roles, but the

users as well.

4. Conflict avoidance and/or resolution policy can be enforced to avoid any conflict,

either between simultaneously active roles or operations permitted for such roles.

4.2 Extension to the Metamodel of UML

This section presents my extension of the UML metamodcl that allows system developers

to design dynamic authorization and workflow policies in the de'lt;n phase using the

UML.

My metamodel extends the UML's core package [OMGOl] that defines basic types

required to model objects such as classes, attributes, operation and associations. I do so

www.manaraa.com

33

by using stereotypes for new types and la<:<:cd values for new attributes on existing types.

Explicitly, I added three new metamodel types: I) security policy constraints (SPC) that

hold and impose constraints necessary to model security, it plays the role of monitor, 2) a

history log that records all actions executed by the system and 3) business tasks that act

as a reference architecture for encapsulating related tasks within a single entity. The new

metamode1 extensions are sufficiently flexible to accommodate not only RBAC, but also

other access control models and workflow policies. Following subsections explain the

metamodc1 in detail.

4.2.1 Security Policy Constraints

SPC is a specialized type of constraint clement in the Core package of the UML's

metamodel [OMGOlj. It is shown with a broken line in Figure 4.3 with the UML core

metamodel. Therefore, SPC can be related to any specialized elements from

ModelElement. For instance, SPC can be related to Class, Operation, Attribute or

Association. SPC has two associations, one with itself and the other with the Constraint

element. These associations are used to refer to other constraints. Therefore, SPC is a set

of explicit or implicit constraints that are imposed in association with other SPCs or

constraint clements.

www.manaraa.com

+constraintElement

, , , , ,
: Generalqonstraint , , , , , , , , , , , ,

ConstraintRelationship ~ \ I, , ,
1------, I I

" , __ ..1. __ _____ I

~ _ ~securitypolicyConstrainiL - ~.
* l ___________ i

Figure 4.3. Security Policy Constraints' Relationship in the Core Package

34

Table 4.1 shows an example of an SPC from the authorize payment operation in the

running example, the SPC consists of three constraints written in OCL. The first

constraint limits role access to operations. The second constraint makes sure that the

current user is not the same one that performed the prerequisite task. The third constraint

specifies operation prerequisites. These constraints are just an example of the types of

constraints in the SPC. They are written in a generic way that can be applied to other

SPC's of other objects. However, constraints can also be written in a specific way (e.g.,

by explicitly naming thc object, role, user and operation in the constraint), but that will

limit their re-usc.

www.manaraa.com

Table 4.1. An Example of the SPC of the Authorize Payment Operation

Security Policy constraint (SPC)

Operation Policy Constraint(s)

Authorize_ Role (User->select(user-CurrentUser ».role~ intersection

payment Restriction (CurrentOperation.Allowedroles)----+ size>O

A ND (User select(user~CurrentUser))role

Intersection (CuurentOperatlOll Derlledroles)----+ size=O

Authorize_ A\oldmg of « ConflictingUsers">select(UsepNamp::CurrentUser» ----+

payment Lonfilctmg collect(users) asSetO) intpI secllon

Authorize

payment

User ((History_Log select(Action~ (BusinessTask

select(Task~"Purchasing") .Operation Prior

(Operation~CurrentOperation))AND

Object~ CurrentObject)) collect(ActionUser)) isEmpty

Operation Histroty _Log select(Action ~(BusinessTask-->

Sequence select(Task~"Purchasing").Operation

(Workflow) Prior (Operation~CurrentOperation)) AND

Object~CurrentObject) notEmpty

35

One of the main issues to be addressed by security constraints is their placement in the

UML models and the metamodel. If all constraints are imposed on one object, then that

object encompasses all access control specifications. While centralizing the design at the

Meta level, this option has the advantage of having a clean separation of security policy

from the rest of the design. This facilitates applying different security policies to the same

design.

Conversely, each object or combination of objects can be decorated with corresponding

security policy constraints. While not giving rise to difficulties in binding objects to their

constraints and encapsulating policies within objects, this approach presents a security

www.manaraa.com

36

nightmare. That is, it scatters the security policies governing a piece of software

throughout its design diagrams. There is also the danger of confusing the difference

between security constraints from other types of constraints such as performance and

design integrity. However, separating each object with its security policy constraints in

different objects, such as spes, can solve the latter problem of mixing security policies

with other types of policies, but it does not solve the problem of scattering security

policies all over the design.

4.2.2 History Logs

In order to enforce history based and dynamic access control policies I introduce the

history log. It maintains method and task execution histories. It was referred to as history

based controls by Simon and Zurko [SZ97]. The history log also facilitates auditing - an

important aspect in enforcing security specifications according to Sandhu et a!. [SS94].

The history log can also be maintained centrally or distributed. Maintaining centralized

history logs can detect inter-object conflicts, although it may become a performance

bottleneck for larger designs.

4.2.3 Business Tasks

In the business world task may consist of more than one operation. For example, the

purchasing task in Figure 4.2 consists of three operations: record invoice arrival. verifY

invoice validity and authorize payment. Because many duties, in the sense of separation

of duty principles, are formulated in terms of business tasks, I model business tasks as

www.manaraa.com

37

first class objects. Specifying operations as a part of a business task means that no user

can perform all the operations of a single business task on a single object that leads to

fraud and errors.

onfli in User Confli tir~1 onfh Irn 0 r ti

Hi to Lo

Figure 4.4. SPC Interactions with Other Elements

4.2.4 Conflicts

Some operations conflict with others. For example. a single user should not perform the

writing a check operation and the signing a check operation. In addition, conflicts may

occur between roles, e.g., the purchmfl/g "!flcer role and the accounts payable manager

role. Conflict may also take place between users, e.g., relatives should not execute

complementary critical tasks. For that reason, I introduce three conflict associations:

conflicting user, conflicting roles and COl/fir, Irng operations.

4.2.5 Interactions between SPCs, History Logs and Business Tasks

Figure 4.4 demonstrates how the SPC interacts with other elements of the metamodel in

order to validate access control policies. The SPC is the corner stone of my model that

www.manaraa.com

38

intercepts each method's call and validates the permission of the caller. The SPC decides

according to the set of all authorization constraints related to the called operation. These

constraints rely on some data contained in other objects. Objects can be one of the

following: First, History_Log contains a log of all users' actions. Second, Business Task

contains all required operations for a particular task. This information can be used to

prevent a user from executing all operations of a single task that may lead to fraud and

errors. Third, conflicting sets of (roles, users, and operations) arc used as a knowledge

base by the SPC to prevent conflicts. Fourth, users and objects can be consulted to

provide identity and other attribute values that are helpful to validate constraints.

4.2.6 Enforcing Access Control Constraints

In order to enforce security constraints, I assume that every system designed with this

metamodel has a reference monitor. The reference monitor ensures that its execution does

not violate security related constraints, and filters every method call. In order for this to

be effective, I assume that all attributes are encapsulated inside their classes and cannot

be accessed other than by calling those operations. This approach is similar to the

reference monitor Sandhu et al. [SS94]. A reference monitor may not necessarily have to

be implemented as a centralized entity as such a design may introduce vulnerabilities.

However, it can be modeled and implemented in a decentralized manner to suit new

decentralized computing paradigms. Section 4.4.3 provides an example of how to model

the extension in a decentralized way.

www.manaraa.com

39

4.3 Applying the New Extension to the Running Example

This section shows how the new mctamodel can be applied to the running example

described in Section 4.1. Here, I demonstrate that Use Cases result in flow constraints.

The following are some sample security related requirements and their translations as

OCL constraints:

I. Required sequence of operations (Workflow policies): Enforcing this policy

requires writing constraints in the SPC and consulting the History _Log and the

Business_Task for previous actions. The business task is consulted to get the

sequence of operations in a single task, and the History_Log is used to validate

the occurrence of previous operations. For example, this policy is enforced on the

Authorize Payment use case by the following preconditions written in OCL:

Context Invoice:: Authorize_Payment():Void

Pre: History _Log-.. select(Action=(Business _Task-..

select(Task="Purchasing").Operation -..

Prior (Operation=CurrentOperation)) AND

Object=CurrentObject)-.. notEmpty

(I)

2. Role constraints: Allow only permissible roles and restrict unauthorized roles.

Suppose that the supervisor role is prohibited from executing the verifY invoice

validity operation. This constraint can be directly specified in OCL as follows:

verify_in voice _ validity.AllowedRoles={PurchasingOfficer} (2)

verify_invoice _ validity.DeniedRoles={Supervisor}

www.manaraa.com

However, to express it as a precondition in the SPC, I write it as follows:

Context Invoice::verify invoice validity (. ..):Void
- -

Pre:(User---+select(user=Current User)).role---+

intersection(CurrentOperation.Allowedroles)---+size>O

AND(User---+select(user=Current User)).role---+

intersection(CuurentOperation.Deniedroles)---+size=O

40

(3)

These are written as general constraints that can enforce the Role Restriction

policies. They consist oftwo expressions. The first expression intersects two sets:

the current user' roles and the current operation's allowed roles (i.e., the Verify

invoice validity operation). If the result set is not empty then the user is allowed to

perform the operation and otherwise disallowed. The second expression ensures

that none of the user's roles are in the current operation's denied roles. For

example, a user playing the Supervisor role cannot perform the verify invoice

validity operation, because it is in the operation's denied roles.

3. Dynamic separation of duty: According to the original specification, recording the

arrival of the invoice and the authorization of the payment has to be performed by

two different subjects. This DSOD requirement can be satisfied by enforcing the

following precondition on the authorize payment method.

Context Invoice:: Authorize_PaymentO:Void

Pre: History _Log---+ select(ActionUser= CurrentUser

AND action="record_invoice_arrival" AND Object=

CurrentObject)---+isEmpty

(4)

www.manaraa.com

41

This constraint ensures that there should not be any record in the History_Log that

shows that the current user has executed the Record invoice arrival operation on

the current invoice. Note that there is no similar constraint on the Authorize

payment operation because the Supervisor role is not allowed to perform the

VerifY invoice validity operation. Also, note that I am using users and not roles to

specify this constraint, because users allow me to impose finer constraints than

roles in this context where a role consists of a set of users.

4. Conflict avoiding policies. The conflict association in each User, Operation, or Role

is used to enforce this kind of policy. For example, the following constraints ensure

that the current user is not in conflict with the user who performed the previous

operation of the task:

Context Invoice:: Authorize Payment():Void

Pre:((ConflictingUsers-->select(UserN arne=Current User»-->

collect(users)-->asSet())-->intersection((History Log--> select

(Action= (Business_Task-->

select(Task="Purchasing").Operation -->

Prior(Operation = Curr entOperation))AND

Object= CurrentObject))-> collect(ActionUser))--> isEmpty

(5)

www.manaraa.com

42

~ 1\ CQDfhdI09u~er~ [H'WCCV I Q{J I Ie, !oe~. Ias" I
AuthonZ9 PaymerJt Request

Get User's R ,""~

User's Role~
(------------

E--------------'------ -------- --" - ----------- -- ------,---
Get User's Conflict

lner' (c ,,,

«C-------- -

!-"e'o'>Jus OperaUon in the Ta5~

E----------------
Grl Pre .. ,()u~ OP<"'<IIoQ<l s Re<:c..'(J

oE----------

Deny Request {OR}

R,...,y,toj AcuQn 1oLog

Figure 4.5. Sequence Diagram for the Authorize Payment Use Case

Figure 4.5 shows the sequence diagram of the authorize payment use case. It is an

example of how the SPC interacts with other objects to validate the call to Authorize

Payment operation. As stated, every method call in Figure 4.5 is redirected to the

reference monitor - the SPC. That shows that all security requirements are enforced and

are based on the fact that we ean translate all security requirements to constraints on

method calls and, therefore, they can be enforced by filtering method calls at the Spc.

This argument assumes that SPC can be designed to enforce all requirements so

translated.

www.manaraa.com

43

4.4 Case Study of Existing Security Models

In this section, I show how to enforce three examples of security policies taken from the

security literature. The first is RBAC the second is flow control polices by Ferrari et a!.

[FSBJ97],; and the third is the distributed authorization processor by Kraft [Kra02]

4,4,1 Role-based Access Control Metamodel

This section shows how to enforce RBAC in a real, secure, application design. In order to

enforce RBAC models, I extend the core of RBAC as suggested in the new metamodel

and shown in Figure 4.6. The dotted lines represent the extension of the new metamodel

to model RBAC polices in the UML, while the rest of the diagram represents my

extension of the UML. The following section shows RBAC policies and how to model

them using the new metamodel:

•

•

Dynamic separation of duty (DSOD): The business task element holds all

related operations of a single business task and the history log records all previous

actions of all users on all objects. Those two types of information suffice to

enforce DSOD.

Static separation of duty (SSOD): The constraint associations between the SPC

and other elements such as User, Role and Operation are the required information

for this policy.

www.manaraa.com

44

• Flow control and workflow: The SPC gets the sequence of operations in a

Business Task and query the history log to check whether the previous operation

to the current one is already completed.

• Conflicts in User, Role and Operation: To avoid such conflicts I specify three

distinct associations that are related to Role. User. and Operation.

• Cardinality in Roles and User elements: I have extended Role clement by

adding tagged values: MaxAllowedUsers and MinAllowedUsers. that are used to

limit the number of users in each role. For example. only one user should play the

CEO role and, hence, the MaxAllowedUsers is I. Note that the same is true with

Users.

Business Task
Inheritance

, ' Conflicting Rol~S Set
Conflicting User Set Conflicpng Operatjon Set.

Lc -I Q -R~e~--J AliowedRoJes {§~Il~~~{~o",~e:"'!'In,;~:",o";':"~J istory Lo
U--= ________ , Operation ser

""':-"->.A"""~;;;·':"'''R'''-:e-,-Iuser Assignment i~~:~~s:e~s : D~~i;d-R~;;:- logged Actions o~l~;t
t'v!inAliowedRoles -'---------:-T___ _ ___ I -~---------.:1=:;:=j-'~, ~~:""~.- -"--i
I Constra'rnled Const ~i~ted

Secuirty Policy Constraints

L _____ CO_"_"_"ain_te_d ________ ~.___f'0peralion
oliey
onstraint

Figure 4.6. RBAC Metamodel

~iiIrtj

1-------1f--

GeneralC nstrainls

www.manaraa.com

45

The extension I did for RBAC introduces two associations: AliowedRoles and

DeniedRoles where the former represents all roles that are allowed to execute an

operation and the later reprcsents all denied roles. Moreover, an operation with no

AliowedRoles association is considered open or closed to all roles according to the access

control meta-policies such as open-policy or closed-policy respectively, unless some

roles are denied in the DeniedRoles association.

4.4.2 Workflow Policies

The extension can be used to specify and enforce workflow and information flow control

policies in object-oriented systems such as the flexible flow control model of Ferrari et aL

[FSBJ97].

The strict policy of [FSBJ97] allows writing an object 0' that depends upon the reading

of object 0 only if all readers of 0' are a subset or equal to the readers of O. But the

approach they presented adds flexibility to this strict policy by introducing two types of

exceptions to methods:

1. Exceptions on releasing information based on return parameters of a method

called reply-waivers.

2. Exceptions for passing information by parameters of a method that are called invoke-

Waivers.

The model uses three components when deciding to permit an information flow. They

are:

1. Access Control Lists (ACL) for each object.

www.manaraa.com

46

2. Reply waivers for each operation where eaeh waiver contains the objects and a set of

users who are waived to receive the operation's returned value.

3. Invoke waivers for each operation where each waiver contains the objects and a set of

users who are waived to invoke the operation.

The example in Figure 4.7 shows a transaction execution tree of method Op 1. Each

operation either reads from object or writes to object. Each object has a set of users who

are allowed to access the object. Opl calls Op2 which reads Obj I and Obj2, and after the

completion of Op2, Op] calls Op3 which writes the infonnation read from Op2 to Obj3.

According to strict policy, Op3 cannot write to Obj3 because the infonnation that is

needed to be written in Obj3 came from more restrictive Objects than Obj3. For example,

the Obj3's users set is not a subset or equal to the users ofObjl and Obj2. Likewise, Op4

will not execute, because it intends to write infonnation that is read from more protective

object (i.e., Obj I). However, [FSBJ97] provides more flexibility than the strict policy. If I

attach a reply waiver: {({Objl},{B,C)), ({Obj2},{C))} to Op2 then Op3 can write the

infonnation because this is a safe flow according to the safe flow theorem [FSBJ97].

Also, if I attach a revoke waiver: ({ {Objl},{B}}) to Op4 then Op4 can write to Obj4

freely because now the users who can access Obj4 is a subset or equal to the ACL of

Obj I and Obj2, plus the invoke-waivers of Op4, e.g., the safe flow theorem.

One important element of the model is the message filter. It is a trusted system

component that intercepts every message exchanged among objects in a transaction to

prevent unsafe flows. The message filter relies on a concept called folder to check each

message exchange.

www.manaraa.com

(~p~)
X

,,/1 4~"
,". /.:".

/Op2\ (Op3\
£ ~'~4' ',Read) '- Write I /' -," /' '/ ro' ° t' J ! Op4 \ ~-"'jC -'1- P pera ,on

I, Write I / ". Obj= Object
,,-... ,:I 2 3 5 <>= Users who can

L
-o;" rot" ,0;" II o:,~=·;""~

<A,B> ~,I <A,B> <A,B,C>I

Figure 4.7. Transaction Execution Tree

47

A many-to-many association between user and operation can represent ACLs. For

example, each object's operation may have one or many users who are allowed to access

it, and each user may be allowed to access one or more of the same object's operation, as

shown in Figure 4.8. Waivers are new elements attached to each object's operation in one

end and to the User on the other end.

A folder is a set of records where each record holds the waIvers applicable to the

information flowing. To represent it in my model, I use the history log as a representation

of the folder to store the required information. The history log in this model is associated

at one end with operations because each folder's record should be related to one

operation at one end (i.e., the first execution of the transaction) and to the user at the

other end (i.e., the allowed users of each folder). The folder records consist of a

transaction id, the type of folder (backward or forward), the execution source (i.e., an

operation), the execution destination (i.e., an operation), the object's identification, and

www.manaraa.com

4R

the object's operation, and each record is associated with a set of allowed users. The

me",,~, filter intercepts each message to prevent unsafe flows by checking the ACL, the

reply-waivers and the invoke-waivers, or to construct folders.

~~~-_-}j~~r_ ~ ______ ; 
:Transaction 10 : 
IType : char I 
IISource: Operation I 

. • IDesitenation: Operation: 
waived Users 'Object: Object I 

r-_...J. ,1-_ 
I :s>peratlon~~ratr~n_-! Tj'a 

Business Task 

Conflicting Operation Set 

n~ctio~ Operation ~ 
0 .. 1 Conflicting User,Sel. I I ____________ ~ . n· istory lO!; 

J {order~S:d 
Operation J f"'" j I J Allowed User (ACl) 

L.. ___ 

User 1--------------- .... logged Actions 
~loOfl 
bhlf"C1 

~axAllowedRole - I '-R-;ply Walvers-' • 
1:--------1 inAJlowedRoles 

-*---~~ ;--
• I ________ ...! • 
• r---------

- - - ~~v~~e-~.!.v.!~ r - -
,object I ,---------, 

. : 
1 --

1 _________ 1 

~. 

• J 

J I 1 

----- ~o1st in'ed Constraint 

J . I-
-------

ecuirty Policy Constraint i' 
Operation 
Policy General 

onslraint 

. . 
l *related to" J 

Figure 4.8. Metamodel for the Flexible Information Flow Control Model 

nstraints 

4.4.3 Representing Distributed Authorization Model 

In this section, I show how the new metamodel can be used to model a new proposal of a 

Web service's authorization by Kraft [Kra02]. Web services provide an easy 

development, deployment, maintainability and accessibility through the Internet. 

However, security must be imposed on Web services to succeed. There are security 



www.manaraa.com

49 

standards and proposals to achieve better security on Web services and one of them is a 

Kraft proposal [KraOl] on the Web service's authorization. 

Kraft [KraOl] introduces a distributed authorization processor architecture that 

incorporates basic Web service objects, plus Jggreg.lllon, composition, operations and 

specialization on Web services. The model aesIgnea as a SOAP (Simple Object Access 

Protocol) filter gateway that operates as an authorization service for Web services. The 

distributed authorization processor is based on two components: a gatekeeper and an 

authorization processor. Authorization Processor is a web services that makes 

authorization decisions for a Web services component, whereas, a gatekeeper is an 

authorization processor that has to make the final decision on granting or denying 

requests. Each Web service component may have one or more authorization processor 

while it may have at most one gatekeeper. Also, a gatekeeper has the function of 

authenticating principles of incoming requests. Another issue is that Web services may 

belong to a web services collection; therefore, in order to access a Web service that is a 

member of a collection, the gatekeeper needs to check the Web service's authorization 

processor and the collection's authorization processor to make the authorization decision. 

A simple scenario is shown in Figure 4.9 (taken from Kraft [KraOl]). The scenario starts 

when a client request a Web service object 3, then the gatekeeper (#1) of the requested 

Web service (#3) intercepts the request to determine if the client is allowed to access the 

required Web service or not. Thus, first, the gatekeeper authenticates the client (I will 

ignore authenticating clients to focus on access control only). Second, the gatekeeper 

checks every access control processor that is related to the requested Web service (#3, 



www.manaraa.com

50 

#6) to find out whether the client is allowed. Because the Web service object 3 is a 

member of the Web service object 6, the gatekeeper must also check the access control 

policy (ACP) (#2) that controls the access to the Web service object 6. If all access 

control processors accepted the request, the gatekeeper routes the request to the requested 

Web service otherwise, it rejects the request. 

Web service collection 

J;s a mem ber of 

Request 
r:?~:-, ---) 

Makes authorization decision for 

Figure 4.9. Distributed Access Control Processor Architecture Scenario 

The representing Kraft model [Kra02] is straightforward usmg the new metamodel. 

Before I show how to model it, I assume that, when a client accesses a Web service, 

he/she is invoking an operation on that Web service. The authorization processor is a set 

of authorization constraints that are related to a specific Web service's operation. 

Therefore, the authorization processor is modeled as an SPC. Furthermore, because 

gatekeeper is an authorization processor, the gatekeeper is also modeled as an SPC. The 



www.manaraa.com

51 

SPC is flexible to accommodate any constraints that belong either to the authorization 

processor or Ih~ g,lIeJ.,.eeper. 

Kraft [Kra02] introduces the Web service collection, which contains a number of Wcb 

services. The access rights of any member are based on the union of both the Web 

service's access rights and the collection root's access rights for the Web service. 

Therefore, there should be some sort of representation of the relation between a member 

and its root. The new mctamodel provide this representation by the association "related 

to" that associate Web service's SPC to its root's Spc. 

4.5 Conclusions 

Security needs to be integrated into the software development life cycle, and propagated 

throughout its various phases [DSOO]. Therefore, it is beneficial to have secure 

development integrated with industry standard methodologies and notations such as 

Rational Unified Process (RUP) [RUP04], Concurrent Object Modeling and Architectural 

Design with the UML (COMET) [GomOO] and the UML. 

I extended the UML metamodel to specifY and enforce access and flow control policies. I 

added SPC, business tasks and a history log. Then I showed how security requirements 

could be specified and enforced by using new extensions. These requirements are in the 

access control, flow control and workflow specifications. Based on an implementation of 

the SPC as a reference monitor, I show how to enforce security requirements specified at 

the requirements specification stage of the life cycle. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Chapter 5 

EXTENDING THE USE CASE MODEL 

In this chapter, I show how to extend the use case model in a three ways: I) I present the 

access control schemas that unify the specification of the access control policies in the 

use case, 2) I present the access control table that visualizes the access control policies 

and helps in applying inconsistency and conflict resolution for small scale software 

systems, 3) I extend the use case diagram to show accurate access control policies. 

5.1 Introduction 

In the UML, requirements are specified with use cases at the beginning of the life cycle. 

Use cases specify actors and their intended usage of the envisioned system. Such usage -

usually, but not always - is specified in terms of the interactions between the actors and 

thc system, thereby specifying the behavioral requirements of the proposed software. 

Fowler and Scott say that a use case is a set of scenarios tied together by a common user 

goal [FS99]. Use cases are written in an infonnal natural language. Thus, different people 

may write varying degrees of details for the same usc case. Currently, a use case is a 

textual description with: I) actors and/or their roles; 2) preconditions and post conditions, 

3) normal scenarios with sequence of actions by the actors and/or the system; 4) 

52 

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333


www.manaraa.com

Chapter 5 

EXTENDING THE USE CASE MODEL 

In this chapter, I show how to extend the use case model in a three ways: I) I present the 

access control schemas that unify the specification of the access control policies in the 

use case, 2) I present the access control table that visualizes the access control policies 

and helps in applying inconsistency and conflict resolution for small scale software 

systems, 3) I extend the use case diagram to show accurate access control policies. 

5.1 Introduction 

In the UML, requirements are specified with use cases at the beginning of the life cycle. 

Use cases specify actors and their intended usage of the envisioned system. Such usage -

usually, but not always - is specified in terms of the interactions between the actors and 

thc system, thereby specifying the behavioral requirements of the proposed software. 

Fowler and Scott say that a use case is a set of scenarios tied together by a common user 

goal [FS99]. Use cases are written in an infonnal natural language. Thus, different people 

may write varying degrees of details for the same usc case. Currently, a use case is a 

textual description with: I) actors and/or their roles; 2) preconditions and post conditions, 

3) normal scenarios with sequence of actions by the actors and/or the system; 4) 

52 



www.manaraa.com

53 

abnormal or exceptional scenarios. In contrast, a usc case diagram visualizes actors and 

their relationships with scenarios [JClOn, BlU'j') I As I shall demonstrate during the 

course of this chapter, usc cases are not sufficient to model the details of access control 

policies. Consequently, I enhanced the use cases model by adding something analogous 

to (soon to be discussed) operation schemas. 

Operation schemas, introduced by Sendall and Strohmeier [SSOO], enrich use cases by 

introducing conceptual operations and specifying their properties using OCL syntax 

[WK99]. The operation schema can be directly mapped to collaboration diagrams that are 

used later in the analysis and design phases. 

Although operation schcmas are precise, they do not specify system security. Therefore, I 

extended the operation schemas to cover access control, and I refer to the extended 

schemas as the access control schema. Introducing an access control schema as a 

separate syntactic entity has several advantages. First, it isolates access control policies 

from other functional requirements that are usually elaborated in operation schemas. 

Second, this separation facilitates several access control policies to one use case, thereby 

modularizing the design. 

There is a need for negative authorization as there is a need for positive authorization. In 

particular, with the presence of subject hierarchy, the need for explicit negative 

authorization is greater because subjects do not have explicit authorizations only, but also 

may have implicit authorizations from the inheritance of the junior subject's permissions. 

Therefore, negative authorizations are used to block some positive authorizations that 



www.manaraa.com

54 

have been gr,lnted to subject. With the introduction of a negative authorization, there is 

also a need to manage any conflict between authorizations (positive and negative). 

Sometimes usc cases over-specify or under-specify authorizations, leading to 

inconsistency and incompleteness, respectively. In order to avoid both extremes, security 

literatures use conflict resolution and decision meta-policies. I applied the two policies to 

the use cases. In addition, adhering to the visual specification tradition of the UML, I 

attached access control tables to visualize the process of applying meta-policies in 

conflict resolution. 

Based on resolved complete and consistent policies, I constructed refined use case 

ul,lgrarns that illustrate access control policies visually. I developed a methodology with 

the following steps: 1) writing the access control policy schema, 2) developing an access 

control table and applying propagation, conflict resolution, and decision policies on all 

use cases, 3) propagating authorizations to operations, 4) resolving conflicts in the access 

control table for operations; and 5) drawing the refined use case diagram. 

This chapter does not show how to model or implement the access control policies as 

FAF [JSSSOI], Author-X [BBC+OO] or PERMIS [C002] does, but it rather addresses the 

representation and management of access control policies at the early phases of the 

software development life cycle - thereby focusing on how to represent and produce 

conflict-free and complete authorizations. The output of this work can be used later to 

feed other access control mechanisms such as FAF, Author-X or PERMIS. 



www.manaraa.com

55 

The remainder of this chapter is organized as follows. Section 5.2 explains an example 

that will be used throughout the chapter. Section 5.3 describes the steps of specitying the 

access control policIes with the use case. 

Jt& 
)~ -

Clerk 

/9,.. 
0\ ., 

Purchasing Offic r 

lJ""i 
Superv,sor 

A~ 

~ 
Clerk 

Purchasing Payment 

i----R-ecord invoi~e'-.''''. 
\. arrival.> 

/----Verify invoice--~'\ 
\'-.... validity ~/ 

Figure 5.1. The Use Case Diagram 

P:: 
Clerk 
6 
,;.1 

,\\ fJ 

purchasi~fficer 

I 
I 

:LA 
L I 

SupervISor 

Figure 5.2. The Role Hierarchy 



www.manaraa.com

56 

S.2 Running Example 

The running example describes a purchasing process where a set of tasks assigned to 

authorized roles as shown in Figure 5.1. Role-Based Access Control (RBAC) [SCFY96j 

is the access control model for this example. The set of access control policies applicable 

to this example arc as follows: 

I. Use cases such as record Invoice arrival, verity invoice validity, authorize 

payment and write a check are to be applied in the specified order. 

2. Each use case should be executed by an actor playing an authorized role(s) as shown 

in Figure 5.1. For example, the write a check use ease should be invoked by 

(authorized to) clerk role. In addition, the role hierarchy implicitly authorizes a 

specialized role to inherit permissions. For example, according to Figure 5.2, the 

supervisor role inherits the purchasing officer's permissions and the purchasing 

officer inherits the clerk's permissions. 

3. Supervisor cannot execute the write a check use case. 

4. No user should perform more than one use case on each object. This is a one type of 

Dynamic Separation of Duty (DSOD) policy. For example, a user should not record 

and verity the same invoice. This policy is claimed to prevent fraud and errors 

[CW87]. 

5. If the invoice's total amount exceeds one million, then two different supervisors must 

authorize the invoice. 



www.manaraa.com

57 

5.3 Formal Steps for Specifying Access Control Policies 

5.3.1 Writing Access Control Schema 

Operation schemas do not cover access control policies. Therefore, I introduce the access 

control schema to specify them. 

Figure 5.3 and Figure 5.4 show the standard format and an example of the access control 

schema, respectively. As shown in Figure 5.3, an access control schema has: I) Use case 

name, 2) Object, 3) Description, 4) Declarations, 5) Users and roles that are either 

authorized or denied to invoke a use case, and 6) Pre and post conditions of the schema. 

Figure 5.4 refers to the authorize a payment use case of Figure 5.1. The pre-condition of 

the schema in Figure 5.4, has four constraints: I) the invoice is already verified; 2) if the 

invoice's total amount is less or equal to one million, then the invoice must not be 

authorized yet, 3) if the invoice's total amount exceeds one million, then either the 

invoice is not yet partially authorized or partially, but not fully, authorized, and 4) the 

current user did not participate in any prerequisite operation on the same invoice. 

Conversely, the postcondition ensures the correctness of operations with respect to the 

access control constraints. 



www.manaraa.com

Use Case: the use case name. 

Object: the object of the use case. 

Desc~iption: short textual description of the action. 

Decla~es: constants, variables, objects and data types used in the pre and post 

conditions. 

Autho~ized (use~. g~ouP. and ~ole): a list of users, groups or roles that are 

authorized to access this operation on this object. 

Denied (use~. g~ouP. and ~ole): a list of users, groups or roles that are denied to 

access to this operation on this object. 

Integ~ity Const~aints (P~e): specify all integrity constraints that must be satisfied 

before executing the operation written in OCL. 

Integ~ity Const~aints (Post): specify all integrity constraints that must be satisfied 

after the operation is executed. It is written in OCL. 

Figure 5.3. Format of Access Control Schemas 

58 



www.manaraa.com

Use Case: Authorize Payment 

Object: Invoice 

Description: Actor authorizes the payment after it has been verified. If the amount 

exceeds one million dollar then the authorization is partial until a different supervisor 

completes it. 

Declares: 

UserWhoDidPreviousOperations: Set (History _Log) ::= History _Log-7 
select (User= CurrentUser AND 
(Operation="Record_ Invoice_Arrival" OR 
Operation="Verify_Invoice_ Validity")AND Object= CurrentObject);
-rr will return a record or more if the current user has done one of the prevjous use case. 

Authorized (User, Group, Role): Supervisor--Role 

Denred (User, Group, Role): none 

Integrity Constraints (Pre): 

In voice.verified="true"; 
Invoice.TotalAmount<=lOOOOOO implies Invoice.authorized= 

"false"; 
Invoice.TotalAmount>lOOOOOO implies 

(Invoice.partialAuthorized= "false" OR Invoice.authorized= 
"false") 

UserWhoDidPreviousOperations -7 isEmpty; - The current user djd not do 
other operation on the current jnvojce(Dynamic Separation Of Duty) 

Integrity Constraints (Post): 

If (invoice.TotalAmount>lOOOOOO AND 
invoice.partialAuthorized@pre="false") then -the jnvojce has not 
been partially authorjzed by different Supervjsor before. 
Invoice.partialAuthorized="true"; 

else 
in voice.authorized= "true"; 

Endif; 

Figure 5.4. The Access Control Schema for the Authorize Payment Use Case 

5.3.1.1 Constraints 

59 

Authorizations in the form of authorized or denied clauses in the access control schema 

do not capture all access control constraints. Therefore, there is a need to properly 



www.manaraa.com

60 

express application constraints such as dynamic separation of duty. Next, I will provide 

some access control constraints in commercial systems, and I will consider several 

known versions of separation of duty (SOD) policies. I show how to write SOD policies 

as an OeL constraint in the integrity constraint clause of the access control schema. 

Figure 5.5 illustrates the relationship between objects that are used to specifY integrity 

constraints. 

Object 

1 +Operation 

1------ AliowR AllowU I--User--I 1 Role 1 Operation 
1----- -I 

DisaliowR • DisallowU • 1 -----1 
\ _____ 1 • • 1 ---I 
I_n~ • • Assume • • ~_nl 

• • 
Figure 5.5_ The Access Control Model 

5.3.1.2 Static Separation of Duty Principles 

Static SOD principles prevent subjects (role or user) from gaining permissions to execute 

conflicting operations. There are many kinds of static SOD policies and they are listed 

below: 

Mutually exclusive roles: A user shall not assume two conflicting roles. For example, a 

user must not assume both the Purch"",,!!. Otricer and the Accounts Payable Manager 



www.manaraa.com

61 

roles. This policy can be ensured if no user is enrolled in two mutually exclusive roles, 

say RoleA and RoleB and can be specified in OeL as follows: 

(Role-7 select(name= "RoleA") ).user-7 

intersection(Role-7select(name="RoleB").user )-7size=O 

Business Task: A user must not execute a specified busincss task that comprises a set of 

operations. For example, user U must not be authorized to perform the Record, Ver!fY 

and Authorize use cases on the same object and this can be specificd as follows: 

User.Allowu-7 

select(Operation=Operationl OR Operation=Operationn ) -7 size<n 

Where n is the number of operations to perform a critical task. 

Mutually exclusive operations: Mutually exclusive operations must not be included in 

one role, i.e., writing and signing a check must not be allowed to the Manager role. 

OperationA.AlloWR-7intersection(OperationB.AllowR)-7size=O 

5.3.1.3 Dynamic Separation of Duty Principles 

Dynamic separation of duty (DSOD) allows user to assume two conflicting roles, but not 

to usc permissions assigned to both roles on the same object. There are several types of 

this policy discussed in [SZ97l, of which I will show some. One DSOD constraint is to 

restrict the user from performing the Record, Ver!fY and Authorize use cases on the same 

object. In order to specifY this policy, a history of already granted authorizations must 



www.manaraa.com

62 

exist. For this purpose, I added a formal syntactic object History_Log to maintain a Table 

of (user, role, operation, object and time). 

Dynamic Separation of Duty: This version says that a user cannot perform more than n 

operation on the same object, stated as a precondition of an operation: 

History_Log-7 select (User= Current User AND 

(Operation=Operationl OR Operation=Operation2 OR 

Operation=Operationn1 ) AND Object= CurrentObject)-7 size<n·l 

5.3.1.4 Other Access Control Constraints 

Role prerequisites: A user must be enrolled in a particular role before assuming another 

role. This can be stated as a postcondition of the role assignment where RoieB is the 

prerequisite role as follows: 

User.Role-7 includes(RoleA) implies User.Role-7 includes(RoleB) 

Permission Prerequisites: A role must be authorized to execute a particular operation 

before grantlllg that role with another operation. This constraint can be specified as a 

postconditIOn of permission assignment where OperationB is the prerequisite permission. 

For example, the Supervisor role cannot assume the authorizes a payment role unless this 

role already has a permission to read the invoice's data. 

Role.Operation -7 includes( OperationA) implies Role.Operation-7 

includes( OperationB) 

Cardinality Constraints: This constraint specifies a maXimum and/or a mmlmum 

number of operations that can be executed by a user or a role. This policy may be applied 



www.manaraa.com

63 

to the number of users for each role or to the number of permissions for a specific role. 

For example, the Supervisor role must have at most one user. This constraint can be 

specified as follows: 

(Role-7select(narne=RoleNarne».User-7 size <sign> n 

where <sign> is one ofthefol/owing «.>, <=,>=, <>,=) and n is the limit. 

(Role-7select (narne=RoleNarne».Operation-7 size <sign> n 

where <sign> is one of the following «,>, <=,>=, <>, =) and n is the limit. 

5.3.2 Developing an Access Control Table and Applying Propagation, 

Conflict Resolution and Decision Policies on All Use Cases 

Use cases and their access control schemas may over or under specity authorizations, 

thereby rcsulting in inconsistency or incompleteness. To analyze access control policies 

in the early phases of small-scale software systems, I present the following steps. First, 

present the access control of the use cases using the access control table. Second, apply 

the propagation policy. Third, apply the conflict resolution policy. Fourth, apply the 

decision meta-policy on the access conlrol tables in order to resolve inconsistencies and 

incompleteness. 

Access control tables show static access control policies rather than dynamic access 

control policies because the dynamic policies can be validated only during the execution 

time; thus, all that I can do during the analysis phases regarding the dynamic policies is to 

write the policies in unified constraints as I discussed them in Section 5.3.1. 



www.manaraa.com

64 

The access control table is a matrix where the (ij)'h entry in the Table is (,f) /( x) 

symbolizing if role i is permitted/prohibited in invoking usc cases j. Table 5.1 shows the 

access control table for the use case of the running example. 

Table 5.1. Access Control Table of The Running Example. 

RolelUse case 

Clerk 

Purchasing Officer 

Supervisor 

Record Invoice 

Arrival 

Verii}' Invoice Authorize 
Write a Check 

Validity Payment 

x 

Next, I will show how propagation, conflict resolution decision policies can be applied to 

makc an access control table complete. 

5.3.2.1 Propagation Policies 

Most systems use some kind of hierarchy, e.g., roles, subjects or objects. Hierarchies 

induce inheritance and, if the intended application has some form of applicable 

inheritance principles, they can be used to complete the access control table. These 

inheritance principles are referred to as propagatIon principles in the access control 

literature [JSSS01]. Several examples of propag.Jtlon policies from (JSSSOl] are as 

follows: 

• No propagation: Permission shall not prop,lg,lte throughout the hierarchy. 



www.manaraa.com

65 

• No overriding: Permissions propagate through the hierarchy and other 

contradicting authorizations. Therefore, if an entity's authorization is positive and 

its ancestor's authorization is negative, then both authorizations apply to the 

entity. 

• Most specific overrides: If an entity has an explicitly granted permission, then 

that overrides any inherited permission. However, if the entity does not have an 

explicitly authorization, then its immediate ancestor's authorization will apply to 

the entity. 

• Path overrides: An entity's authorization overrides any inherited conflicting 

permissions for that node and for all unauthorized sub-nodes on the same path 

only. 

It is up to the requirement engineer to choose the policy. I refer the reader to [JSSSOl] for 

an example of how each policy is applied. Table 5.2 shows the access control table of the 

running example after applying the most specific overrides policy where ././ and 

lele denotes derived positive and negative permissions, respectively. For example, 

because the Purchasing Officer is a specialized role of Clerk, all permissions of the Clerk 

role should be propagated to the Purchasing Officer, such as the permission to write a 

check. However, if there is an opposite explicit permission for the role that the 

authorization will propagate to - such as, the Supervisor role for the write a check use 

case - then the propagation policy enforces the most specific permission. 



www.manaraa.com

66 

Table S.2. Access Control Table After Applying Propagation and Decision Policies. 

Record Invoice Verify Invoice Authorize 
Role \ Use case Write a Check 

Arrival Validity Payment 

Clerk -/ -/ 

Purchasing O/ficer -/ -/ -/-/ 

SupervIsor -/-/ -/-/ x 

5.3.2.2 Conflict Resolution Policies 

Propagation may generate access control conflicts. Thus, conflict resolution policy 

resolves conflicting permissions, of which I will show some variants [JSSSOl] as 

follows: 

• Denials take precedence: When positive and negative permissions are granted, 

negatives override positives. 

• Permissions take precedence: When positive and negative permIssIOns are 

granted, positives override the negatives. 

• Nothing takes precedence: When positive and negative authorizations apply for 

an object, neither positive nor negative apply, leaving the specification 

incomplete. 



www.manaraa.com

67 

Table 5.3. Access Control Table After Applying Propagation and Decision Policies. 

Record Invoice Verify Invoice Authorize 
Role \ Use case Write a Check 

Arrival Validity Payment 

Clerk ./ xxx xxx ./ 

Purchasing Officer ./ ./ xxx // 

Supervisor ././ ././ ./ x 

5.3.2.3 Decision Policies 
Decision policies complete incomplete authorization. For example, the authorize a 

payment use case in Table 5.2 does not have an authorization (positive or negative) for 

the Clerk role. Does this mean that the Clerk can or cannot execute the use case? The 

following are some decision policies that can be used to answer this question: 

• Closed Policy: Every access is denied, unless there is a positive permission. 

• Open Policy: Every access is granted, unless there is a negative permission. 

The result of applying the closed policies for the running example is shown in Table 5.3 

where all undecided permission is marked xxx indicating prohibitions. 

5.3.3 Propagating Authorizations to Operations 

Previous sections showed how complete and consistent permissions could bc assigned for 

actors to invoke use cases. This section shows how they can be propagated to abstract 

operations used in the access control schemas. Thus, permission (for subject, operation) 

needs to be derived from those assigned to (actor, use case) pairs. One of the issues is that 



www.manaraa.com

68 

an abstract operation may be part of more than one use case and, therefore, could inherit 

multiple permissions per uscr. Therefore, although incompleteness does not arise, 

inconsistency may arise due to multiple inheritances of permissions. I illustrate this issue 

with the running example. Table 5.4 shows the operations of each use case. 

Based on identified operations, the access control table specified for actors to use cases 

can be used to derive permissions for abstract operations. I refer to this Table as the 

access control table for operations. Thus, the access control table for operations consists 

of permissions of each operation for every actor. Table 5.5, shows the access control 

table of all operations of the usc cases in the running example. Inconsistency may happen 

in this stage where an operation may belong to two use cases and an actor may have 

inconsistent authorization for the same operation due to authorization inheritance. For 

example, the Read operations authorization for the Supervisor role inherits positive 

permissions from the Authorize payment use case, and negative permissions from the 

Write a check use case. Thus, the Supervisor role has an inconsistent authorization for 

that operation. 



www.manaraa.com

69 

Table 5.4. Identified Operations. 

" ~ u Verify Invoice Validity Authorize Payment Write a Check 
Record Invoice 

u Arrival ::: 
Invoice :: Read Invoice :: Read Invoice :: Read Invoice :: Read 

:g Invoice:: Record Agreement :: Read Invoice:: Authorize Check:: Write 
.g 
e g, inVOice :: "Vrlte prices 
o 

Invoice ::" enfy 

Table 5.5. Access Control Table for Operations. 

Read:: Record:: Read:: WritePrice:: Verify:: Authorize:: 
Role\Operation Write ::Check 

Invoice Invoice Agret>lllerlt Invoice Invoice Invoice 

Clerk " / xxx <xx xxx xx< " 
PUTl..hJ<;lIlg Officer " ,. / .' • xxx // 

Supt'fvisor y x 

"" v'" // "" x 

5.3.4 Resolving Operations Authorization Conflicts 

Conflict resolution in the access control table for the operations has to consider two 

issues: 

1. Invalidating Use Case level permissions: Any resolution may result in 

invalidating an entry in a complete and consistent access control table for Use 

cases. For example, the Supervisor role in the running example has both positive 



www.manaraa.com

and negative authorization for the Read operation on the Invoice objects, in Table 

5.5. If the conflict resolution policy enforces negative authorizations over the 

positive ones, the system ends up preventing the Supervisor role from executing 

the Authorize payment use case because one of the required operations is denied. 

70 

2. Violating access control constraints: Although, the step in Section 5.3.2 resolves 

conflicts, the end result may violate access control policy. For example, the write a 

check permission may be granted to the Supervisor role that has an explicit negative 

access control policy (according to the access control policy number 3 in Section 5.2). 

As a result, required access control constraints are violated. The Access control 

schemas must be complete and consistent. Visually, all cells in the access control 

table should have one of {v', ,,}. In addition, the following observations help in 

resolving conflicts at this level. 

First of all, although some access control policies conceptually apply to several roles, in 

reality only a fewer roles may violate them (e.g., access control policies should be 

enforced on fewer roles). For example, suppose an access control policy states that no 

role can record, verity and authorize the same invoice. According to Table 5.3 only the 

supervisor role can perform all three use cases on the same invoice because the 

Supervisor is the only role with positive permissions to execute all three use cases. Thus, 

the integrity constraint only applies to the Supervisor role. This example shows how an 

access control policy that applies to all roles can result in one role violating it. 



www.manaraa.com

71 

Second, flow constraints between use cases imply dependencies bctween conflict 

resolution strategies. For example, policy #4 in Scction 5.2 states that a role cannot 

perform any two use cases on the same invoice. It is not efficient to enforce this integrity 

constraint on each use case. However, integrity constraints should be enforced before the 

execution of the second and third use case because, in sequential use cases only at those 

use cases, at least one use case would have been executed. Thus, the decisions about 

which use case can optimally enforce the mlcgrlly constraint of DSOD policies are not 

straightforward. The algorithm in Figure S.b chooses the optimal use case among those 

that havc dependencies enforced between them. 

Applying a policy on one use case is trivial task. However, when applying a policy on a 

set of use cases, a decision on the details of enforcement is essential in reducing the 

overhead of validating such policies. A set of usc cases may depend on each other where 

one cannot start until the previous one has completed. 



www.manaraa.com

Int n /ITotal number of entities that the policy is enforced on. 
Int m /IMinimurn number of entities that must not be invoked by 

lithe same subject. 
Int z IITotal number of other use cases not in the current tree. 
Int q I/A use case, q~lm-zl. 
Int i liThe level of q. Level: it comprises a set of use cases 

Iithat have the same order in a dependent tree. 
//Entity can be use case or operation. 

If n~m then 
if there are no dependent entities trees then 

for each independent entity do 
Write the integrity constraint on the entity. 

else //there are dependent entities trees 
if there is only one dependent entities tree then 

write the integrity constraint on the last entity 
of this tree. 

else //there are more than one dependent entity tree. 
for each independent entity do 

Write the integrity constraint on that entity. 
for each dependent entities tree do 

write the integrity constraint on the last 
entity of each tree. 

End If 
End If 

else /1 m<n 
if there are no dependent entities trees then 

for each independent entity do 
write the integrity constraint on the entity. 

else /Ithere are dependent entities trees 
for each independent entity do 

Write the integrity constraint on it. 
for each dependent entities tree do 

if m ~ z then 
k~l 

else 
k~i 

End If 
write integrity constraints on use cases from the 
k" level to the highest level of the dependent 
tree. 

End loop 
End If 

~nd If 

Figure 5.6. An Algorithm for Enforcing Integrity Constraint of DSOD Policies 

72 



www.manaraa.com

73 

Assume there is an access control policy that must be enforced on four use cases. The 

policy is to prevent a user from performing any three use cases on the same object. Three 

of the use cases are dependent on each other sequentially, while the fourth is independent 

of the rest. According to the new Algorithm in Figure 5.6, this policy should be enforced 

as a prerequisite on the independent use case, while, for the three dependent use cases, 

the policy should be enforced on the second and third use cases because a user may 

invoke the first, then the independent, then the second use case on the same object that 

violates the policy. As an advantage, systems do not have to validate the policy on the 

first use case because I am sure that the policy will not be violated and because, after 

performing this use case, two more use cases must executed due to the dependency on the 

first usc case. The Algorithm in Figure 5.6 can also apply to operations, instead of to the 

use case. 

5.3.5 Drawing The Refined Use Case Diagram 

Although use case diagrams visually represent the behavioral requirements of a proposed 

software system, they are not sufficient to represent existing access control policies. At 

best, the usc case diagram shows some access control by stating the roles that actors are 

permitted to invoke. 

Thus, having visual representations of access control policies is very much in accordance 

with the objectives of the UML. I refined the use cases diagram for this purpose as in 

Figure 5.7. The refined use case diagram represent all possible access control policies 

(positive, negative. e"pileit, implicit and integrity constraints), which provides clear 



www.manaraa.com

74 

visual access control policies. The refined the use case diagrams to have many desirable 

features as follows: 

• I explicitly associate actors with all usc cases that they are authorized (explicitly 

or implicitly) to invoke. Thus, the absence of an association between an actor and 

a use case is read as a prohibition. 

• The new refined use case diagram adapts a relationship, which is introduced by 

the Open Modeling Language (OML), called Precedes [FHG97]. The relationship 

is used to specity dependencies and order of invocation among use cases. 

• Use cases diagrams should be enhanced with access control schemas, in order to 

specity details of access control policies for both actors to invoke use cases and 

for subjects to invoke abstract operations. Access control schema is represented as 

attached constraints to each use case. Although. this may clutter the diagram, 

especially when integrity constraints are complex, It provides useful information 

about access control polices. 

The access control policies in the running example in Section 5.2 are represented in the 

refined dldgrdnl as follow: 

• Policy #1 is represented by Precedes relationship to show the dependence and 

flow of use cases. 

• Policy #2 and #3 are represented by showing all explicit and implicit 

authorizations between actors and use cases where the absence of link between 

actor and use case means a negative authorization. Note that the associations of 

the original use case diagram do not represent all possible positive authorizations. 



www.manaraa.com

75 

The absence of authorizations between actor and use case do not mean negative 

authorizations. 

• Policy #4 and #5 are shown as constraint notes attached to use cases that arc 

derived from the integrity constraint clause of the access control schema. 

/ Purchasing Payment "\ 

Superv 

~ rRe~ord mE:=> " 

lerk ~arrival 
I ----------" • Invoice.recorded="true"; /:q • Invoice.verified="false"; , ' ~ • History_Log select (User= CurrentUser AND , ' '" , " Operation="RecordJnvoice_Arrival" AND Object= , ' '" , Co CurrentObject) size<2 , , '" , , '" , , 

Lr:;ri~ invEl 

, 

I~ 
, , 

, validity , , , , / --r Integrity Constraints (Pre); si~g / 
er \ " 

Invoice. verified = "true"; 

" 
~I 

Invoice.T otaIAmount<= I 000000 implies Invoice.authorized= 
/" I "false"; ,,, 

Invoice.T otalAmount> I 00000o implies , ' 
i 1/\ ~ (Invoice.partiaIAuthorized= "false" OR 
! // \ 

~AuthOri~[Y Invoice.Authorized= "false") 
'i'- , payment 

UserWhoDidPrevoiusOperations isEmpty; - The cu"ent user 
, - did not do other operation on the current invoice(Dynamic 

isor , Separation Of Duty) , 

~ 
C 

Cle 

, "U Integrity Constraints (Post): , .. , If (invoice.T otalAmount> I 00000o AND , " , '" invoice.partialAuthorized@pre=' fal>e ') then -the invoice has , Co , '" not been partially authorized by d'fferent Supervisor before. , 
'" , Invoice,partiaIAuthorized= true else , , , 

Writing a Ch~ 
invoice.authorize= "true"; Endlf, 

rk I ------'" • Invoice.authorized="true" 
• Check.writen="false" 

\.. 

Figure 5.7. The Refined Use Case Diagram 



www.manaraa.com

76 

5.4 Conclusion 

I designed artifacts and a methodology to use them in speeitying aecess control policies 

during the requirement specificatIOn and analysis phases. My use case extension and 

enhancement specifies access control policies in a formal and precise manner, and is 

capable of deriving access permissions along hierarchies. In addition, I presented meta

policies, algorithms and methodologies to resolve conflicting permissions before 

proceeding to the design phase. I introduced the access control table as visual 

representation of access permissions and extend the use case diagram to completely 

specity them. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Chapter 6 

AUTHUML 

The previous chapter extended the use case model to specity access control policies. 

Also, it presented a methodology to analyze access control requirements for small scale 

software systems. In this chapter, I present AuthUML, a framework to formally verity the 

compliance of access control requirements with the access control policies during the 

specification phase of UML based software lifecycle. AuthUML differentiates from the 

methodology in the previous chapters by focusing on large-scale software systems. 

AuthUML concentrates more on the veri tying rather than representation of access control 

policies. AuthUML is based on Prolog stratified logic programming rules. Thus, tools can 

be implemented to automate the verifications of requirements for large software systems. 

AuthUML is based on F AF [JSSSO I] of Jajodia et aI., and is an attempt to advance its 

application to the requirements specification phase of the software development life 

cycle. Therefore, AuthUML is a customized version of FAF that is to be used in 

requirements engineering. Therefore, AuthUML uses similar components of FAF with 

some modification in the language and the process to suit the Use Case model used in 

UML. Because FAF specifies authorization modules in computing systems, FAF is 

invoked per each authorization request. Contrastingly, AuthUML is to be used by 

77 

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333


www.manaraa.com

Chapter 6 

AUTHUML 

The previous chapter extended the use case model to specity access control policies. 

Also, it presented a methodology to analyze access control requirements for small scale 

software systems. In this chapter, I present AuthUML, a framework to formally verity the 

compliance of access control requirements with the access control policies during the 

specification phase of UML based software lifecycle. AuthUML differentiates from the 

methodology in the previous chapters by focusing on large-scale software systems. 

AuthUML concentrates more on the veri tying rather than representation of access control 

policies. AuthUML is based on Prolog stratified logic programming rules. Thus, tools can 

be implemented to automate the verifications of requirements for large software systems. 

AuthUML is based on F AF [JSSSO I] of Jajodia et aI., and is an attempt to advance its 

application to the requirements specification phase of the software development life 

cycle. Therefore, AuthUML is a customized version of FAF that is to be used in 

requirements engineering. Therefore, AuthUML uses similar components of FAF with 

some modification in the language and the process to suit the Use Case model used in 

UML. Because FAF specifies authorization modules in computing systems, FAF is 

invoked per each authorization request. Contrastingly, AuthUML is to be used by 

77 



www.manaraa.com

78 

requirements engineers to avoid contlicts and incompleteness of accesses. Therefore, 

while F AF is used frequently to process each access control request during execution, 

AuthUML is to be used less frequently during the requirements engineering phase to 

analyze the access control requirements. 

AuthUML uses Prolog style stratified logic programming rules to specifY policies that 

ensure desirable properties of requirements. Because requirements are specified using 

actors invoking Use Cases, AuthUML uses predicates to specifY which actors (subjects) 

are permitted or prohibited from invoking any given Use Case. Moreover, it uses rules to 

specifY the policies that need to be enforced on the system. 

The remainder of this chapter is organized as follows. Section 6.1 presents the process of 

applying AuthUML. Section 6.2 describes the syntax and semantics of AuthUML. 

Section 6.3, 1.4 and 1.5 describe the first, second and third major phases of AuthUML 

respectively. 

6.1 AuthUML Process 

AuthUML consists of three main phases where each consists of several steps. As shown 

in Figure 6.1, AuthUML takes authorizations from requirements specifications and then 

analyzes them to produce complete, consistent and conflict-free authorizations. 

The first phase starts with a set of access control requirements, where they arc 

transformed into a unified representation in the form of access predicates. Also, the first 

phase ensures that all specified accesses are consistent and conflict-free. The second 



www.manaraa.com

79 

phase ensures that all accesses specified for Use Cases are consistent, complete and 

conflict-free, without considering the operations used to describe their functionality. 

During the third phase, AuthUML analyzes the access control requirements on 

operations. All three phases consists of rules that are customizable to reflect policies used 

by the security requirements engineers. 

From the access control requirements that are provided in the form of AuthUML 

predicates, the second phase propagates accesses based on subject and/or object 

hierarchies. Any inconsistencies that may occur due to such propagated accesses are 

resolved using conflict resolution rules. After this, all accesses that are explicit (i.e., given 

directly in requirement) or implicit (derived) are consistent, but may not be complete, i.e., 

not all accesses for all subjects and Use Cases may be specified. Therefore, using 

predefined rules and policies (i.e., closed or open policies) in the next step (5 in Figure 

6.1) completes them. Therefore, accesses specified before step 6 are directly obtained 

from requirements, propagated due to hierarchy or consequences of applying decision 

policies. Thus, it is necessary to validate the consistency of the finalized accesses against 

the original requirements and to check for conflicts between them. If AuthUML finds any 

inconsistency or conflict among accesses at this step, it will notify the requirement 

engineer in order to fix it and run the analysis again. 



www.manaraa.com

(Phase 1) 

t-
i 

fR9pre!enting"",\ 
I: Authorization a I \" Requirements 

On use case level 
(Phase 2) 

,,;;;,d"';;;.i I' and ( ------
1\ Confiict-free AR 

L-_ -3 C p .. ,-pp-,L,,-ti-OO-' ~' 

1 
( In~~~~slency ~ 
~~liony 

( 
• 

Decision 
making 

On operation level 
(phase 3) 

Correcting the 
Authorization 
Requirements 

(-- -;g Fixing 
Authorization 

\ Requirement 

( 
~ Validating conSjstenc:~ t 

between AR and the ------
Finalized Authorization 

"----- I 
"---+- • 

Figure 6.1. Auth UML Architecture 

I (P""f""~h' 
\]

UlhonZ8hon on 
Use Case to 
Operal!Ons 

'",oo",~n', I 
1\ Resolution ~ 

~ 
(Ensuring CO.:rtiC10 
I free 10 I:I/ 

80 



www.manaraa.com

81 

The third phase of AuthUML applies the same process to operations used to describe Use 

Cases. This phase does not have a decision step, as in the second phase, because each Use 

Case propagates its accesses to all its operations. As a result, accesses specified during 

this phase are complete. In addition, access specifications of operations at the end of this 

phase arc consistent because the inconsistency resolution step in the operation level will 

attempt and resolve all inconsistencies. However, if it cannot do so, the process will stop 

and notifY the requirement engineer about the inconsistency to be fixed by manual 

intervention. Up to this step, accesses are consistent and complete, but may not be free of 

application specific conflict. Thus, the purpose of the last step of this phase is to detect 

those conflicts. 

There is a difference between the access specifications fed into Auth UML and those that 

come out of it, i.e., finalized access specifications are consistent, complete and free of 

application specific conflicts. This outcome is the main advantage of my work. Thus, 

AuthUML focuses on access control requirements as early as possible to avoid any 

foreseeable problems before proceeding to other phases of the development life cycle. As 

the development process proceeds through its life cycle, changes of the access control 

requirement may occur. For example, the Use Cases may be changed to invoke different 

operations, or refined/new operations may be added. Consequently, already accepted 

accesses may need to be reanalyzed. Therefore, it is necessary to go back and run the 

AuthUML again to preserve the consistency, and to ensure complete and conflict-free 



www.manaraa.com

82 

accesses. Thus, my framework is flexible enough that it allows changes in the access 

control specifications. 

The architecture of AuthUML differs from the architecture of F AF in two aspects. First, 

AuthUML analyzes accesses in two levels, Use Cases and operations in order to 

scrutinize accesses in course-grain and fine-grain levels, respectively. Second, steps 2, 6 

and 9 are introduced in Auth UML to detect inconsistencies and conflicts between 

different levels of accesses that arc absent in F AF. Moreover, AuthUML receives a bulk 

of access control requirements but not just one access request at a time. Thus, as I will 

show later, AuthUML produces accesses only if there arc sufficient rules to resolve all 

application level conflicts. 

6.2 AuthUML Syntax and Semantics 

6.2.1 Individuals and Terms of AuthUML 

The individuals of AuthUML are the Use Cases, operations, objects and SUbjects. Use 

Cases specify actors and their intended usage of the envisioned system. Such usage -

usually, but not always - is specified in terms of the interactions between the actors and 

the system, thereby specifying the behavioral requirements of the proposed software. 

Each Usc Case consists of a set of operations that are used to describe the Use Case. Each 

operation operates on an object, and operations are the only way to query or manipulate 

objects. Subjects are permitted to invoke a set of Use Cases and thereby all operations 

describing that Use Cases. I use subjects as actors in UML or role in Role-based Access 



www.manaraa.com

83 

control (RBAC) [SCFY96, SSOO]. I denote uc. OP. OBJ, and S as set of Use Cases, 

operations, objects and subjects respectively. An access permission can be permitted or 

prohibited, that is, modeled as a positive or a negative action, rcspectively. AuthUML 

syntax is bui It from constants and variables that belong to four individual sorts. Namely, 

signed Use Cases, signed operations, (unsigned) objects and (unsigned) subjects. They 

are represented respectively as ±uc, top, 0 bj, and s, where variables are represented as 

±Xuc, ± X op, X obj , and Xs. 

6.2.2 Predicates of AuthUML 

I use F AF predicates with some customizations and some new predicates to model 

requirements as follows: 

Following predicates are used to model structural relationships and called rel

predicates. 

1. A binary predicate UC_OP(Xuc,Xop) means operation Xop is invoked in Use 

Case Xuc. 

2. A binary predicate OP _ OBJ(Xop,Xobj) means operation Xop belongs to object 

Xobj. 

3. A binary predicate before(Xop,X'op) means that Xop must be invoked before 

X'op. 

4. A ternary predicate inUCbefore(Xuc,Xop,X'op) means Use Case Xuc invokes 

Xop before X'op. 



www.manaraa.com

Following predicates are used to model hierarchies and called hie-predicates. 

1. A binary predicate in(Xs,X's), means XS is below X's in the subject hierarchy. 

2. A binary predicate dirin(Xs,X's) mean Xs is directly below X's in the subject 

hierarchy. 

Following predicates are used to model conflicts and called con- predicates. 

1. A binary predicate conflictingSubject(X,lC',) means subject Xs and X', are III 

conflict with each other. 

2. A binary predicate conflictingSubjectcoo"m(X,,X\Y) means that both subject Xs 

and X's must not invoke Y, where Y can be a use case or an operation. This 

predicates is more specific to stating the conflict for a particular content, e.g., the 

operations. 

3. A binary predicate conflictingUC(Xu,'x'u,) means that Use Cases Xu, and X'ue are 

in conflict with each other. 

4. A binary predicate conflictingOP(Xopl('op) means operations xcp and x'OD are in 

conflict with each other. 

5. A ternary predicate ignore(X,Y,Y) represents an explicit instruction by the 

requirements engineer to ignore a conflict among X,Y and Y' where x. Y and 

y' are either subjects, operations or Use Cases. 

84 

The following predicates are used in the first phase of AuthUML to authorize, detect 

assignment conflict or detect inconsistency in the access control requirements: 

1. opInConUC(X"p'xuc.x'uJ, means X'P is an operation in two conflicting Use Cases 

Xuc and X'uo and conOpInUC(Xopox',pl(ue) means that X'D and x'cp are two 



www.manaraa.com

conflicting operations in Usc Case xu", and flowConInUC(Xuc,xop,x'op) means that 

XOP and x'oP are invoked in a way that violate execution order. 

2. A binary predict candOuc. where candouc (X.zxuc) means subject x, can or cannot 

invoke the Use Case Xue depending on the sign of Xue. positive (+) or 

nagative( -). 

3. A binary predicate alertReq(X,,xue) to inform the requirements engineer that there 

is either an inconsistency (between access control requirements) or a conflict 

(between subjects or Use Cases) on the access of X, on Xue' 

85 

Following predicates are used in the second phase of AuthUML to authorize, detect 

conflicts and inconsistencies at the Use Case level: 

1. A ternary predicate overUC(X"x',.±xue) meaning X;s permission to invoke ±Xue 

overrides that of X',. 

2. A binary predicate deI'candouc with the same argument as candouc. 

dercandouc(X,,±Xuc) is a permIssIOn derived using modus ponens and stratified 

negation [ABW88]. 

3. A binary predicate douc. where dOuc(Je,,±Xuc) is the final permission/prohibition for 

subject x, to invoke Use Case Xue depending on if the sign ofxuc is + or-. 

4. A binary predicate alertuc(x,,xuc) to inform the requirements engineer that there is 

either an inconsistency (between the access control requirement and the final 

outcome of this phase) or conflict (bctween subjects or use cases) on the accesses 

that involve x, and Xuc 



www.manaraa.com

86 

Following predicates are used in the third phase of AuthUML to authorize, detect 

conflicts and inconsistencies at the operation level: 

I. A binary predicate dercandoop(X,,±xop) is similar to dercandouc except the second 

argument is an operation instead of a Use Cases. 

2. A binary predicate doop(:K,;,±Xop) is similar to dOue . but the second argument is an 

operation. 

3. cannotReslove(X,.xuc'x'uo-Xop ) is a 4-ary predicate representing an inconsistency 

that can not be resolved at the operation level with the gIven rules. 

4. A binary predicate alertop(x,.Kop) informs the reqUirements engineer that there 

is a conflict between subjects or operations on the authorization that involve :K,; 

and xcp. 

Assumptions 

• The subject I used refers to a role (as in RBAC) or an actor (in UML) and not to 

an end user of a software system, The role is a named set of permissions and users 

may assume a role in order to obtain all of its permissions. 

• Every Use Case must have at least one operation (i.e., 'txeUC 3yeOP UC_OP(x,y» 

and every operation must belong to one and only one object (i.e., 'txeOP 3!yeOBJ 

OP _ OBJ(x,y»). 

• Each positive access of a Use Case to a subject means that all operations of that 

use case arc also positively authorized to the same subject. This is consistent with 

[Sen02l. Conversely, a prohibited Use Case to a subject must have at least one 

prohibited operation to that subject. 



www.manaraa.com

87 

As already stated, cando represents an access permission obtained from requirements and 

dercando represents an access derived using (to be described shortly) rules. Both cando 

and dercando do not represent a final decision, but only an intermediate result. For 

example, although candouc(X,.+Xu,) is obtained from requirements docs not mean that 

subject Xs will be allowed to finally execute Use Case Xu,. The reason being that 

propagation, contlict resolution and decision policies may change the authorization 

expressed in candouc(X,.+x",). However, douc(X,.+xu ,) if derived represents the final 

authorization decision. 

6.2.3 Rule of AuthUML 

An AuthUML rule is of the form L +- L, ... Ln where L is a positive literal and L, .. Ln are 

literals satisfYing the conditions stated in Table 4.1. 

An Example: 

candoucCsupervisor, +"authorize payment') <-- (1) 

(2) 

(3) 

Rule 1 says that supervisor can access Use Case "authorize payment. " Rule 2 specifies 

the inheritance of authorizations in the subject hierarchy. Rule 3 expresses the 

permissions take precedence policy of resolving conflicts. 



www.manaraa.com

88 

Table 6.1. Rules Defining Predicate 

Stra-
Phase Predicate Rules defining the predicate 

tum 

rei-predicates base relations. 

hic~predicates base relations. 
() 

con-predicates base relations. 

ignore(X.Y.Y') Explicit instructions to ignore the X,Y conflict. 

0 oplneon UC()("p,Xcc ,X' uc) 
~ 

-" "- conOpln UC(Xpp,X' pp,Xuc) body may contain hie, ignore, rei predicates. 

flowCon I n UC(Xuc,Xpp,X' pp) 

2 I. JndOt.dX,,±X lIc) body may contain hic-, con- and rel-prcoll.ales 

3 J IcrtRcq(X"X lIc) bodY may contain literal from strata 0 10 2 

4 o\-CTuc( \, \ ,±\,,,) body may conldln literals from ':;Irata 0 to 1 

dCTcandOt, (\. 2:\~. ) b(~y may contam predICates from .... trat.i 0 to 4 
5 

<'l O..: ... urrt11le~ of dercandvuc mu~t b..,; posItive. 
" ~ ~ 

6 douc(Xs,+ Xuc) body molv I..-ontam prcdlCJ[es from ::.Irdta 0 10 5 .c 
"-

7 do,xl' -'.,,1 bod} contains one ltteral-,dolJ,:-(A, + '(~() 

8 alertL'C( " ,",) bod: may I.ontaln IHeral from "truw 0 to 7 

q dc;rcandu(IP(As,±~p} body may contam prcalcales !rom strata U to 7. 

Occurrences of dercandOop mu'>t be pocatne 

.., 10 dOor! \, + ',p) body may con tam predlCJte::. Irom strata 0 to 9 
~ 
~ 

11 d~,p{ \, -'\"'rJ bod} contain:, one literal -,dOcop( \, + ",p) s: 
I~ cannolRe:.-lo\e(\, \uc \ ~( \''P) body may l.ontJln literal from ,trdta (I to II 

13 alerlOP(A"XopJ body rllC1Y I,.:U0l3ln literal from strJta 0 to II 

6.2.4 AuthUML Semantics 

Table 4.1 shows the stratification of rules used in AuthUML. Rules constructed according 

to these specifications fonns a local stratification. Accordingly, any such rule based fonn 



www.manaraa.com

89 

has unique stable model and that stable model is also a well-founded model, ala Gelfond 

and Lifschitz [GL88]. As done in FAF, r can materialize AuthUML rules also, thereby 

making the AuthUML inference engine efficient. 

6.3 Phase I: Analyzing Information in Requirements Documents 

This section goes though steps I and 2 of AuthUML and shows how the AuthUML 

processes the access control requirements. 

6.3.1 Representing Authorizations 

Following [JSSSOI], r assume that requirement engineers already specify access control 

requirements and that it is not in the scope of this chapter to go further on that subject. 

Authorization requirements consist of: 

1. Permissions for the subject to invoke the Use Cases 

2. The Subject hierarchy. 

3. Structural relationships (Use Case - Operation - Object Relations). 

4. Conflicting subjects, Use Cases and operations sets. 

5. Conflicts of interest. 

All of the above must be written in this step in the form of AuthUML rules in order to be 

used during subsequent steps. They are represented as follow: 

1. At this step, access permissions are written in the form of candou, rules 

representing explicit authorization obtained from the requirement specification. 

Rule 4 and 5 are examples: 



www.manaraa.com

90 

candouc( clerk, + recordIn voiceArrival)~ (4) 

candouc(supervisor, - writeCheck) ~ (5) 

Rule (4) permits the clerk to invoke the "recordinvoiceArrival" U,e Case. 

Rule (5) prohibits the supervisor to invoke the "write Check " Use Case. 

2. Subject hierarchy is represented using the in predicate to indicate which subject 

inherits what. For example, in(purchasingOfficer.clerk) means that the purchasing 

officer is a specialized subject of clerk that inherits all its permissions. 

3. Structural relationships represent the relations between use case and its 

operations, operations and its object, and the flow between operations in a use 

case. UC_OP(Xu,.xop) says that xup is an operations invoked in the Use Case Xu,, 

OP_OBJ(Xop,XabJ) says that operation xo~ belongs to object Xobj. In addition, 

before(Xop,X'op) means that xop must be executed before x'ap is executed 

and inUCbefore(Xu,.xop,X'op) means that Use Case Xuo calls for executing Xo", 

before X'ap' 

4. Application definable conflicts occurring among subject, Use Case and operations 

arc represented respectively by coflictingSubjects(X,,X',), conflictinguc(Xu,.x'uc) and 

coflictingop(Xop,X'ap), 

5. Requirement engineers may decide to accept some conflicts as in [GH91, GH92, 

NEDI]. AuthUML uses ignore(X,Y,Y) to accept a conflict between Y and Y. 

The main goal of the ignore predicate is to only allow specified conflicts, but not 

others between access. 



www.manaraa.com

91 

6.3.2 Ensuring Consistent And Conflict-Free Access Control 

Specifications 

Access control requirements may specifY inconsistencies where one requirement permits 

and another requirement denies the same permission. In addition, two conflicting subjects 

may be permitted to invoke the same Use Case or operation, or a subject may be 

permitted to invoke two confllCllllg Use Cases or operations. Latter kinds of permissions 

may violate the Separation of Duty pnnciple [CW87]. 

In small systems, discovering conflicts can be easy, because of the small number of 

entities and engineers writing those requirements. However, detecting conflicts and 

inconsistencies between access control requirements in large system is more problematic. 

Therefore, AuthUML can specifY rules that detect inconsistencies between the 

requirements that are specified by many security engineers. Detecting inconsistencies and 

conflicts at this stage prevent them from spreading to the following stages of the life 

cycle. This step of AuthUML takes access control requirements in the form of cando rules 

and automatically applies inconsistency and conflict detection rules to identifY their 

existence, as follow: 

alertuc(Xs'x ue) f-candouc(Xs,+ Xuc), candouc(Xs, + X'uc), 

conflictinguc(Xuc'x'uc), ~ignore(Xs'xuc'x'uc) 

alertuc(Xs'xuc)f-candouc(Xs,+ Xuc), candouc(X's,+ Xuc), 

conflictingSubjectcon"n,(Xs,X's), ~ignore(Xuc'xs,X's) 

(6) 

(7) 

(8) 



www.manaraa.com

opInConUC(Xop'xuc'x'uc) ~UC _ OP(Xuc'xop), UC_ OP(X'uc'xop), (9) 

conilictinguc(Xuc'x'uc), -,ignore(Xop'xuc,X'uc) 

conOpIn UC(XUC,xop,X'op) ~ UC _ OP(Xuc'xop), UC _ OP(Xuc,x'op), (10) 

conflictingop(Xop,X' op),-,ignore( UC'xop,X'op) 

flowConInUC(Xuc,xop,X'op) ~ UC_OP(Xuc'xop), UC_OP(Xuc,x'op), (11) 

before(Xop'x'op), Xop;/X'op, -,inUCbefore(Xuc'xop, X'op) 

92 

Rule 6 says that, if there are two requirements where one grants and the other denies the 

invocation of the same Use Case to the same subject, an alert message will be raised to 

the security engineer that identifies those that lead to the inconsistency. Rule 7 says that, 

if' a subject is permitted to invoke two conflicting U,e Cases that are not explicitly 

allowed by the ignore predicate, an alert message is II 1,Qt:< I cd in order to facilitate 

manual intervention. Rule 8 says that, if a Use Case is permlfted to be invoked by two 

conflicting subjects, a manual intervention need to be sought. Rule 9 and 10 are related 

to the conflicting assignments of operations to Use Cases. Rule 9 detects having 

operations in two conflicting Use Cases and rule 10 detects having two conflicting 

operations in the same Use Case. Rule II says that, if two operations used in one Use 

Case violates the order in which they are to be called, the first two conflicts can be 

ignored if the requirement engineer explicitly uses the "ignore" predicate. 

Notice that detectable conflicts that appear at this step are structural in nature. That is, 

they arc conflicts or inconsistencies independent of the permissions or prohibitions 

assigned to execute them. 



www.manaraa.com

93 

6.4 Phase II: Applying Policies to Use Cases 

The previous phasc analyzes statically given, access control requirements without using 

any policies and produces consistent and conflict-free accesses. This phase (steps 3, 4, 5 

and 6) applies policies that are specified using AuthUML rules relevant to Use Cases. 

Such policies may add new permissions or change existing ones. 

6.4.1 Propagation Policies 

Most systems use some hierarchies to benefit from inheritance. This step may generate 

new permissions according to chosen propagation policies. All explicit or derived 

permissions are transformed to the form of dercandoop rules (derived authorizations). 

Some examplcs of propagation policies are listed in [JSSSOl] and represented as 

AuthUML rules in Table 6.2. 

6.4.2 Inconsistency Resolution Policies 

In complex systems with many Use Cases, permission propagation may introduce new 

permissions that in tum may result in new inconsistencies. Inconsistency resolution 

policies resolve such inconsistencies. Examples are listed in [JSSSOl] and represented as 

AuthUML rules in Table 6.3. The rules in Table 6.3 define inconsistency resolution 

policies. For example, for the denial take precedence with an open policy, if there is no 

denial, permission is granted for such subject. However, in the case of a closed policy, 

the previous definition is not enough because there must be a permission in the absence 



www.manaraa.com

94 

of a prohibition. The last rule completes the rule base prohibiting every access that is not 

permitted. 

Table 6.2. Rules for Enforcing Propagation Policies on Subject Hierarchy. 

Propagation policy Rules 

No propagation dercandouc(Xs,+Xuc)+-- candouc(Xs,+Xuc) 

dercandouc(X" ~Xu,)"" candouc(X,. ~Xuo) 

No overriding 

Most spccific 

overrides 

Path ()\efTJd~::. 

dercandouc(X,.+Xu,) .... candouc(X',,+Xu,), in(X,. X',) 

del candouG(X -Xu)+- candou. (X S -X.Jt) lfl(X, X's) 

dercandoucCX> +X c ,)<- candoTJ ,;( X +Xw) m(X X), 

-,overuc(X ..... X~+XUC) 

dercandouc(X" ~Xu,)"" candouc(X·,. ~Xu,), in(X, X',), 

-,overuc(X.9 X:s. -Xuc) 

overuc(X,,X,·,+Xu,) .... candouc(X",. ~XU,), in(X,. X",). in(X\X',), 

s"~ s· 

OVeruc(X" X,·.~XuJ<- candOuc(X",,+Xu,,), in(X, X",), in(X", X',), 

s" #:s' 

dercandouc(X,,+ Xu,)<- candouc(X,. + Xu ) 

dercandouc(X,. ~Xu,)<- candouc(x,. ~XU,) 

dercandouc(X,.+Xu,)<- candouc(X',.+Xuc ), ,candouc(X. ~Xuo), 

dirin(x" X',) 

dereandouc(X" ~Xu,)<- candouc(X'" ~Xu,), ,candouc(X,,+Xu,), 

dirin(X, X',) 



www.manaraa.com

Table 6.3. Rules for Enforcing Inconsistency Resolution and Decision Policies. 

Inconsistency 

Denial take precede-nee 

Denial take precedenl.e 

permission ta"'~ prcu!dence 

permission take prc(..edencc 

Nothing take precedence 

Nothing take precedence 

Additional closure rule 

Decision Rules 

open dOuc(Xs,+X'J )+- -,uel candow(X -Xuc) 

closed douc(X.~,+X" J+- deJ'candn,r,,(Xs+X'Jc), 

open 

closed 

open 

closed 

... der'f'a ndnrlC(Xs,-Xuc ) 

douc(X +X u,)+- dercando",JX"+X,,c) 

douc(Xs,+Xw:;)+- --,dercando f1 :\X -Xuc) 

douc(Xs,+Xu< )+-- del candou,,( Xo +X Jo') 

dOuc(Xs,+XtJ )+-- ---.dt>f'eandouclX
j 

-X,] ) 

douc(Xs,+Xuc)+- dt:I'candouc(Xs,+Xuc), 

-,derca.nduw( X" -Xu) 

dou(X., -Xuc)t- -.do-p (Xs+X j ,) 

6.4.3 Decision Policies 

95 

Decision policies complete authorizations so that every subject must have either a 

permission or a prohibition to execute each Use Case and operation. Following are some 

decision policies that have been suggested: 

Closed Policy: Accesses without permissions are prohibited. 

Open Policy: Accesses without prohibitions are permitted. 

This is the last step that finalizes all accesses of Use Cases to subjects that are consistent 

with each other and complete, They are written in the form of douc rules. AuthUML like 

FAF ensure the completeness of access control decision by enforcing the following. 

( 12) 



www.manaraa.com

96 

6.4.4 Alerting the Requirements Engineer of Changes to Use Case 

Accesses 

As stated, final acceSSeS of the last step are consistent with each other, but it may have 

changed the original requirements. Also, there may not be sufficient rules to resolve 

application specific conflicts. This step uses the alertuc predicate to inform the 

requirements engineer of such changes or problems. 

alertuc(Xs,xuc)+-candouc(Xs.+ X uc), douc(Xs,-Xuc) 

alertuc(Xs,xuc)+-candouc(Xs,-Xuc), douc(Xs,+Xuc) 

(13) 

Rule 13 says that an alert message will be raised if there is an access control requirement 

and a contradictingfinal authorization/or the same subject on the same Use Case. 

Once informed by AuthUML the requirements, the engineer can revisit potential 

problems and, hopefully, resolve them before proceeding to apply fine-grain policies that 

specifY operation level accesses. 

6.5 Phase III: Applying Policies to Operations 

The previous phase produces consistent and conflict-free Use Cases. This phase (step 7, 8 

and 9) analyzes operations to ensure consistent, conflict-free and complete permissions to 

invoke operations. 



www.manaraa.com

97 

6.5.1 Propagating Permissions to Operations 

This phase applies fine-grain access control policies to operations. Recall that Use Cases 

are described using operations and some execution order among them. Because any Use 

Case contains one or more operations, permission to invoke a Use Case propagates to its 

operations. Following rules specifY such propagation policies. 

dercandoop(Xs,-Xop)~ UC _ OP(Xuc,xop), douc(Xs,-Xuc) 

dercandoop(Xs,+ Xop)~ UC _ OP(Xuc,xop), douc(Xs,+ Xuc) 

(14) 

Rule (14) says that, if an operation is part of a Use Case, the permission of the Use Case 

propagates to that operation. 

6.5.2 Inconsistency Resolution for Operations 

Because an operation can be called on behalf of more than one Use Case and, thus, can 

inherit permissions from more than one Use Case, applying rules such as (14) may 

introduce conflicts. Therefore, conflict resolution must be applied to operations. As I 

stated before, I assume that each positive permission of a Use Case is inherited by all its 

operations. Conversely, a prohibited Use Case must have at least one prohibited 

operation. 

An operation may be called in two Use Cases with contradicting permissions for the same 

subject, with the result that the subject will have been granted a permission and a 

prohibition to execute the same operation. One policy that can resolve this contradictory 

situation is to retain the permission to execute the operation for the subject only if another 



www.manaraa.com

98 

operation belonging to the prohibited Use Case already has a prohibition for the same 

subject. In doing so, I preserve the assumption that, as long as there is at least one 

prohibition on operation for a subject in a Use Case, that Use Case has a prohibition for 

the same subject. Rule 15 specifies this conflict resolution policy as an AuthUML rule: 

doop(Xs,+ Xop)+-dercandoop(Xs,+ Xop), dercandoop(Xs,-Xop), (15) 

UC _ OP(Xuc,xop), douc(Xs,-Xuc), UC _ OP(Xuc,x'op), 

dercandoop(Xs,-X'op),x'op;tXop 

6.5.3 Completing Accesses for Operations 

Therefore, after the application of rule 15, AuthUML ensures the following: 

1. There is no operation with contradictory authorizations for the same subject. 

2. For every subject, all operations of a Use Case are permitted if the Use Case is 

permitted. 

The next two rules ensure that all permission of a subjects to invoke operations will be 

represented as do predicates and, therefore, either granted or denied, but not both. These 

rules were used in FAF also. 

6.5.4 Alerting the Requirements Engineer of Irreconcilable Conflicts 

Continuing with the example given at the end of Section 6.5.2, if there is no x'op 

prohibiting x, rule 15 cannot resolve the inconsistency. Hence, AuthUML will raise a 



www.manaraa.com

99 

conflict message to the requirements engmeer informing its inability to resolve the 

contradiction, as stated in rule 18. 

cannotReslove(Xs,Xuc'x'uc'xop)+- dercandoop(Xs, + Xop), 

dercandoop(Xs,-X op), ..,doop(Xs,+ Xop), Xuc.,X'uc 

UC _ OP(Xuc'xop), UC _ OP(X'uc'xop) 

alertoP(Xs'xop)+-doop(Xs,+ Xop),doop(Xs, + X'op), 

conflictingOP(Xop'x' op), ..,ignore(Xop,Xs'x's) 

alertoP(Xop'xs)+-doop(Xs, + Xop),doop(X's, + Xop), 

conflictingSubjectcon"n,(Xs'x's, Xop), ..,ignore(Xop'xs'x's) 

(18) 

( 19) 

(20) 

Rule 19 triggers an alert message if it finds a subject X, that has an authorization to 

invoke two operations that conflict with each other. Rule 20 triggers an alert message if it 

finds two conflicting subjects that have authorizations to invoke the same operation. Both 

rules will not hold if the requirement engineer explicitly allows that conflict by using the 

ignore predicate. 

At the end of phase 3, from the finalized authorization one can generate an access control 

list (ACL) of all positive and negative permissions of all subject to all operations. 

6.6 Conclusions 

AuthUML diverges form others work in this area by focusing on analyzing access control 

requirements at the requirement specification stage rather than modeling them with extra 

syntactic enrichments to UML. I have developed AuthUML, a framework that analyze 



www.manaraa.com

100 

access control requirements to ensure that the access control requirements are consistent, 

complete and conflict-free. The framework propagates access permissions on subject 

hierarchies and solves inconsistencies between authorizations by enforcing predefined 

policies that are written using the logical language of AuthUML. To assure fine-grain 

analysis of access control requirements, AuthUML considers access control requirements 

for both Use Case and its operations. This work aims toward bridging the gap between 

Logic programming and formal security engineering. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Chapter 7 

FLOWUML 

The previous chapter introduced AuthUML that analyze access control requirement. This 

chapter introduces FlowUML that analyzes information flow control requirements. 

7.1 Introduction 

The information flow control policy is an important aspect of security that restricts 

information flowing between objects. In order to formally analyze information flow 

policies during the requirements and design stages of the software life cycle, I developed 

FlowUML. It is a flexible framework using locally stratified logic programming rules to 

enforce user specifiable information flow policies on UML based designs. It utilizes the 

following steps: 

I. Extracts information flows from the UML sequence diagram as predicates. 

2. Derives all inherited and indirect flows. 

3. Checks for compliances with specified policies. 

FlowUML utilizes stated steps for pragmatic reasons. First, information exchanges 

between objects are drawn using sequence, activity or collaboration diagrams, at the early 

101 

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333


www.manaraa.com

Chapter 7 

FLOWUML 

The previous chapter introduced AuthUML that analyze access control requirement. This 

chapter introduces FlowUML that analyzes information flow control requirements. 

7.1 Introduction 

The information flow control policy is an important aspect of security that restricts 

information flowing between objects. In order to formally analyze information flow 

policies during the requirements and design stages of the software life cycle, I developed 

FlowUML. It is a flexible framework using locally stratified logic programming rules to 

enforce user specifiable information flow policies on UML based designs. It utilizes the 

following steps: 

I. Extracts information flows from the UML sequence diagram as predicates. 

2. Derives all inherited and indirect flows. 

3. Checks for compliances with specified policies. 

FlowUML utilizes stated steps for pragmatic reasons. First, information exchanges 

between objects are drawn using sequence, activity or collaboration diagrams, at the early 

101 



www.manaraa.com

102 

stage of development. I choose sequence diagrams for illustrative purposes, and my 

methodology applies to others as well. Second, at this stage, it is easier to re-draw and 

visualize direct and transitive information flows using these diagrams. Third, indirect 

flows and those that result from inheritance may not be visually obvious and, therefore, 

automated support in deriving their consequences could aid the visual design process. 

Fourth, FlowUML extracts information flow based on specified policies. 

Policies in FlowUML are specified at two levels of granularity. At the coarser level, a 

flow is a directed arc going from its source to a sink. At the finer level, flow is qualified 

based on the semantics of methods, attributes passed between the caller and the callee, 

and the roles played by caller and callee objects in the design. 

FlowUML does not assume any meta-policy, and it is flexible in using many of them. 

Although, there arc many important contributions in flow control models and policies, 

FlowUML advances over others in applying a formal framework in the early phases of 

the software development life cycle. 

The remainder of this chapter is organized as follows. Section 7.2 shows information 

flow specifications embedded in the UML sequence diagrams. Section 7.3 provides a 

running example. Section 7.4 describes the notations and assumptions. Section 7.5 

explains the FlowUML process. Section 7.6 has the syntax and semantics of FlowUML. 

Section 7.7 shows the expressibility of FlowUML by means of the running example. 

Section 7.8 describes the ldrgcr scope of FlowUML. 



www.manaraa.com

103 

7.2 Flow Specification in the UML 

The Use Case, which is one of the UML diagram models requirements, specifics the 

usage scenario between the system and its intended users [8RJ99]. These are followed by 

interaction diagrams specifYing how objects in the use case interact with each other to 

achieve the end objectivc. Sequence diagrams are specific interaction diagrams that show 

such interactions as a sequence of messagcs exchanged betwccn objects and ordcred with 

respect to timc. The sequence diagram shown in Figure 7.1 consists of four objects and 

two actors, where Actor A initiates the first flow as a request to read information from 

Obj3 which then returns the requested information. Then, Actor A writes information to 

Obj4 and the control object, following which the flow to the control object triggers other 

flows. 

GGGBG3 
read " , , , 

~------~~: : , , , 
!E---------!, : 

write I , 
• 

call another control 

write 

, , , , , 
~' 

read 
, , 
~ , , , 

-E----------. , , , , 
!4,.--------~' : , , 

write 

Figure 7.1: Sequence Diagram for Use ease2 (coarse grain) 

write 

.' j , , 
Ii. 



www.manaraa.com

104 

As shown in Figure 7.1, every usc case starts with an event from an actor followed by a 

sequence of interactions bctween internal objects and possible actors. During these 

interactions, information flows among objects and actors. Because sequence diagrams 

capture information flow, FlowUML extracts these flows from them. Thus, one could 

write a parser to automate this process from the output of tools such as Rational Rose 

[Ros03]. 

7.3 The Running Example 

The example consists of two use cases. Use case] has a simple scenario shown in Figure 

7.2, and use case 2 has a more complex scenario shown in Figure 7.3. The actor in use 

case] reads information from object Obi] returned as an attribute att] and then writes it 

to Obj2. The actor in use case 2 transfers information between two objects and then calls 

another object, leading to more information flow. 

BG8 
ReadO I 

I 
I III 
: Retum(att1) : 
~ ________ J 

: write(att1) 
I I 

I , 
I 
I 
I 
I 
I 
I .: 

Figure 7.2: The Sequence Diagram for Use Case I 



www.manaraa.com

105 

During the analysis stage of the software development, selected interactions are specified 

between objects. These interactions are further refined by specifYing the message's 

attributes or parameters passed betwcen objects. Therefore, the expressiveness and detail 

in a sequence diagram depends on the analysis stage. For example, the sequence diagram 

of use case 2 can be categorized into two views: coarsc grain view shown in Figure 7.1 

and the fine-grain view shown in Figure 7.3. 

EEEGEE 
read(att1 ) 

'" 
I 
I 

:Retum(att2 att3): 
!<:---------, 
: wnte(att2) 
I 

call(att3) 

I 
I 

~' 

: read(att3') I 

, ~t 

: Return(att4) : 
I :E----------: 
: write(att4) : : 
~I~~--------~ I 
I I 
I I 

I 

write(att5) 

write(att6) 
I 

Figure 7.3: Sequence Diagram for Use Case 2 (fine grain) 

I 
I 
I 
I .. ' 
I 
I 

~' 



www.manaraa.com

106 

7.4 Notations and Assumptions 

7.4.1 Sources, Sinks and Object Types 

Objects in sequence diagrams belong to three categories: actors, entities and control 

objects. Actors initiate flows and send/receive information to/from the system as 

externals. Every use case has at least one actor. Entity objects live longer and store 

information. Control objects provide coordination and application logic. Generally, actors 

and entity objects can be sources or sinks of information flows. Control objects do not 

store information, but they may create new information without storing them. 

Axiom 1: Sources and sinks of information flows are actors and entities. 

7.4.2 Method Names and Information Flows 

Information flows in sequence diagrams arise due to attributes passed in method calls 

such as read and write. For example, the method call read(attl) that reads specific 

information from obj3 exchanges information by sending attl. F10wUML uses any 

mcssage as a flow of information, regardless of its name. 

Axiom 2: Any message with value is considered an information flOw. 

7.4.3 Complex Message Constructs in the UML 

Sequence diagrams construct complex messages from simple ones using four constructs: 

creation messages used to create new objects, iteration messages used to send data 

multiple times, and conditional messages. I consider a creation message as an 



www.manaraa.com

107 

infonnation flow if the caller passes a creation parameter value to the callee. I consider an 

iterated meso,lgc to constitute a single infonnation flow. I consider a conditional message 

to be an IOfonnatlOn flow, regardless of the truth-value of the condition. I consider a 

simple message as a flow if it passes infonnation. 

7.4.4 Attribute Dependencies Across Objects 

First, infonnation flowing into an object may flow out unaltered; this is called exact 

attribute flow in FlowUML. Second, some attributes flowing out of an object may be 

different in name, but always have the same value as an attribute that flows into the same 

object. FlowUML requires this infonnation to be in the similar attribute table. Third, 

some attributes flowing out of an object may depend upon others that flow into the same 

object. FlowUML requires this infonnation to be in the derived attribute table. The 

reason for knowing these is that, during the requirements specification stage, exact 

method details may not be available - but, without such properties, it is not possible to 

derive the consequences of infonnation flowed across objects. I fonnalize these in the 

following definition and axioms: 

Definition 1: An exact attribute is one that flows through an object. but does not change 

its value. When an attribute flows out of an object that depends upon a set of attributes 

flowing in to the same object, I say that the second attribute is derived from the first set. 

Axiom 3: Attribute names are unique over a system. 



www.manaraa.com

t08 

Axiom 4: For every attribute that/lows into an object, another attributejlows out of that 

object with the same value, but with a different attribute name, and both attribute names 

are listed in the similar attribute table and this is considered an exact attributejlow. 

For example, an input attribute namedfamilyName flows out of object A as lastName. If 

their values are the same and listed in the similar attribute table, lastName is considered 

an exact flow of familyName. If an attribute dateOjBirth flows into an object, another 

attribute named age flows out of the same object and both are listed in the derived 

attribute table, age is considered a derived of dateOjBirth. 

I 

IL: 
Metadata Additional Metadata for the fine-grain policy 

Flow Structure Flow Constraints Similar Attributes Derived Attributes 

.L, _____ +-__ _ 

(Dfi:}f 
\ i "' e Inln ,I • 

~ transitive r.: Finalizing ~ .• 
Safe Flow 

. ~ Flow g propagating Detecting 
i t ct Jnhentance~ flow policies I Flow unsafe flow 
~ s ru ure / ~ '----~ 

! .:\, 
~ Resolve flows conflicts J -------. Unsafe fiow is detected 

Figure 7.4: Steps in FlowUML 

7.5 Verification Process 

FlowUML verifies flow policies using five sequenced steps and four mctadata sources as 

shown in Figure 7.4. They are defining basic structure, propagating flow information 



www.manaraa.com

109 

through inheritance hierarchies, inferring transitive flows, finalizing flows and detecting 

unsafe flows. These steps are the same for coarse grain and fine-grain policies. However, 

the details of information and the metadata sources are different when analyzing coarse

or fine-grain policies. Coarse-grain policies have less detail. Fine-grain policies 

incorporate attribute values and their dependencies. 

7.5.1 Coarse-grain Policy Analysis 

In coarse grain policy analysis, the available details of information about flow are the 

objects and how they interact with each other. The analysis starts with the first step, 

called defining flow structure. During this step, FlowUML extracts flow structure 

(objects, and their interaction) from sequence diagrams. This information is transformed 

into some basic FlowUML predicates. During the second step, basic predicates are 

propagated using the actor (or role) hierarchy. This step derives information flows 

implied due to inheritance. Although information flows can be transitive, the previous 

step does not derive those. Hence, the third step derives all transitive flows. The fourth 

step complements the third step by filtering results of the third step to those flows that 

satisj'y properties of interests as specified in policies. For example, in Figure 7. I the third 

step derives a flow from Obj3 to Actor A directly, flow from Ob}3 to Obj4 through Actor 

A, flow from Obj3 to control through Actor A etc. The fourth step, filters out unwanted 

flows according to predefined policies. For example, a policy may only filter in non

transitive flows betwecn only entities and actors; thus, only flows from Ob}3 to Actor A 

and the one from Actor A to Ob}4, but not the flow from Ob}3 to Ob}4, may be of 



www.manaraa.com

110 

relevance. The last step detects flows that violate specified policies. At the moment, 

FlowUML docs not attempt to resolve them automatically. 

7,5.2 Fine-grain Policy Analysis 

As stated in Section 7.4, fine-grain policies require two kinds of additional information. 

The first, given in the similar attribute table, contains distinct attribute names that always 

contain the same data value. The second, given in the attribute derivation table, lists 

attribute dependencies. This information is useful in controlling the flow of sensitive 

information. For example, in Figure 7.3, if there is a record in the attribute derivation 

table stating that alt6 is derived from att3 in the control object, FlowUML concludes that 

there is a transitive flow from Actor A to Actor B. 

7.6 Syntax and Semantics 

FlowUML terms are either variables or constants belonging to five individual sorts: 

actors, objects, usc cases, attributes and times. Constants bclong to sets A, Obj, UC. Att, 

and T, and variables are represented as Xa. XObj, X ue, X att and X t , respectively. 

FlowUML uses a set of predicates, as summarized in Tables I and 2 and categorized as 

follow: 

Basic predicates for supporting the specification of flows, called FlowSup. 

1. A unary predicate isEntity(XOb) meaning X obj is an entity. 

2. A unary predicate isActor(XObj ) meaning X obj is an actor. 



www.manaraa.com

3. A binary predicate specializedActor(Xa,x'a) meaning X'a is a specialized 

actor of X,. 

4. A binary predicate precedes(Xuc, X'ue) meaning use cases Xuc and X'uc are 

cxecuted in that order. 

5. A binary predicate sameAt t(Xatt, X'att) meaning attributes Xatt and X'att 

have the same value. 

6. A ternary predicate der Att(Xatt, X'att, X Obj) meaning that the flowing-out 

attribute X'att is derived from the flowing-in attribute Xatt, an that derivation is 

occurring at object X Obj . 

7. A ternary predicate ignoreFlow(Xa, X obj, X'Obj) meaning to exclude the flow 

from object X Obj to object X'obj from being considered as a violation of flow 

control policies. 

8. A 6-ary predicate ignoreFlows(Xal, X Objl, X'Objl, X a2, X Obj2, X'Obj2) to 

exclude the flow from X objl to X'obj and the flow from X obj2 to X'obj2 from 

being considered as a violation 01 flov. control policies. Two similar predicates 

ignoreFlOWSatt(Xal,Xatt,xobJlX'~bjl,xa2,xobj2,X'Obj2) and 

IgTlOpeFIOWatt(Xa,Xatt,xObj, X'Obj) are used in fine-grain policies. 

Predicates for specifying flow constraints, called ConstSup. 

1. A binary predicate dominates(XObjoX' Obj) meaning that the security label of 

object X'Obj dominates or equals the security label of object Xobj- It is used in 

multi-level security policies. 

III 



www.manaraa.com

2. A binary predicate ACL(Xobj,X'Obj,xAT) meaning that object XObj is in the 

access control list of object X'obi- It is used in discretionary access control 

policies. X AT is an operation such as read or write. 

3. A binary predicate conflictingActors(XObj, X'Obj) meaning that actors X obj 

and X'obj are in conflict with each other for a specific reason. For example, both 

actors cannot flow information to the same object or there must not be a flow of 

information between them. 

4. A binary predicate conflictingEntities(Xobj, X'obj) meaning both entities 

X obj and X'Obj are in conflict with each other for specific reason. For example, 

each entity belongs to different competitive company and information must not 

flow in between. 

Predicates for coarse-grain policies 

I. A 6-ary predicate Flow(Xa,xobj,X'Obj,Xt,xuc, Xop) meaning there is a simple 

flow initiated by actor Xa from object Xobj to object X'Obj at time X t in use case 

Xuc and operation Xop. 

2. A 5-ary predicate mayFlow(Xa,xobj,x'Obj,Xt, Xuc) is the transitive closure 

of the previous predicate. 

3. mayFloWinteruC(Xa,xObj,x'Obj,Xt,xuc) IS similar to mayFlow but the 

scope of mayflowinterUc is between use cases instead of focusing in one use 

case. Note that I want to know the beginning and ending operations rather than 

the beginning and ending use cases. 

4. A 4-ary predicate finalFlow(XaXobJ,X'Obj,Xt) meaning a finalized flow. 

112 



www.manaraa.com

5. finalFlOWtnteruC(Xa,Xobj,X'obj'xt) is similar to final Flow, but it covers 

flows between use cases. 

6. A ternary predicate UIlsafeFlow(Xa'xobj, X'Obj) meaning tbere is an unsafe 

flow from X Obj to X'Obj initiated by actor Xa. 

7. A 6-ary predicate UIlsafeFlows(Xal'xObjl, X'Objlo X a2, X Obj2, X'Obj2) 

meaning there are two unsafe flow. The first, initiated by actor X al flows from 

XObjl to X'objl. The second, initiated by actor Xa2 flows from object X obj2 to 

object X'obj2. They are unsafe because togetber they violate a flow constraint. 

8. A ternary predicate safeFlow(Xa'xobj'x'Obj) meaning that the flow initiated by 

actor Xa from object X obj to object X'obj is safe. 

Predicates for fine-grain policies 

113 

The predicates used to specify fine-grain access control policies are similar to the ones 

for coarse grain policy, but include Xatt as an attribute flowing between objects. They are 

as follows: 

FIOWatt(Xa'xatt'xobj,X'Obj'xt'xuc, Xop), 

mayFlowatt(Xa'xatt'xobj,X'Obj,Xt,Xuc), 

mayFlowtnterUc att(Xa'xatt'xobj,X'Obj'xt,XUc), 

finalFlow att(Xa'xatt'xobj,X' Obj'xt), 

finalFlowtnterUC att (XaXatt,Xobj'x' Obj'x t), 

UIlsafeFIOWatt(Xa'xatt,Xobj,X'Obj), 

UIlsafeFIOWSatt(Xal,Xattl,Xobjl,X'Objl'xa2,Xatt2'xobJ2,X'Obj2), 



www.manaraa.com

114 

safeFlowatt(Xa, Xattl,Xobj,X'Obj)' 

7.6.1 Semantics of FlowUML 

A FlowUML rule is of the form L <- Lt .. .L" where L , Lt .... 1", are literals satistying the 

conditions stated in Table 7. I and Table 7.2. Rules constructed according to these 

specifications form a locally stratified logic program and, therefore, has a unique stable 

model and that stable model is also a well-founded model [GL88]. 

Table 7.1. FlowUML's Strata for Coarse-grain Policies 

Ph Slr~ 
ase tum 

II 

Predicate 

Flov.Sup predicates 

Con<;I')up pre(ilcak"S 

F1ow(X'I. X tJ X l'r XI X,)" X.~) 

lIlayFlnw(X:. ~t., X etl' Xr X",) 

fIlavFlow..r"~.uc(XJ X:tl X 'I' Xl Xl") 

fUl3.l Flow( X" i{"h>. X'''hi. Xl) 

fUla.lF10W tr 'HrUC(X:> X:t>l X "J X t ) 

UTIJ.ftff'FIOWCX" X )0' X 01">,) 

un-;.-JJpFlowS(X:ll X(t)l X Jt.1l Aa... 

X,t),- Xd1.J 
6 ~afeFlow(X", X 1) X~tl) 

Rules defining the predicate 

base relations. 

bod, may (ontain Flov.~up predICate<; 

body may lontam luerallrom strata 0 10 2 

body mdY conlam literal trom strata 0 

and 1 

bod..., may luntam I1teral twm ::.lrala 0 (0 J 

body may conlam IItcral ff0m SlrdW 0 to 4 

body lIIay lontam I1lerallr~)m ::.lTata 0 10 5 



www.manaraa.com

Stra
Phase 

'urn 

o 

2 

3 
.S 
::: 
';" 

" 4 .S 
0-

5 

6 

Table 7.2. FlowUML's Strata for Fine-grain Policies 

FlowSup predicates 

ConstSup predicates 

Predicate 

Flowatt(Xa, Xa.:t. KOb]' X'ehj. X:. Xuc. Xop) 

finalFloWatt eX",. Xat'"' .KobJ. X'Oh» Xt) 

finalFIOWintllrUC att(X" X\tt Yabj> X'obj. Xt) 

unsafeFlowatt(Xa. X",p X,t~ X'Obj) 

unsafeFloWSatt(Xa1 X ,tUX "_l. X'ObJl. X a2• X att2• 

X oQj2• X'Obj2) 

safeFloWatt(Xa. Xatt., Xobj. X'Obj) 

Rules defining the predicate 

base relations. 

ba:.e rdatlon:. 

body may conldln FlLmSup 

predIcate.::: 

body Jllay l:ontdlO IUefal from 

strata 0, 1 and .2 

body may contain literal from 

strata O. 1 and 3 

body may contain literal from 

strata 0 to 3 

body may contain literal from 

strata 0 to 4 

body may contam lueral from 

strata 0 to 5 

7.7 Applying FlowUML 

115 

This section shows how some samples of FlowUML policies and how they can be used to 

detect unsafe flows. 

7.7.1 Basic Flow Predicates 

Examples of flow information available in Figure 7.2 are given in rules (I). The rules (2) 

to (6) are instances of FlowSup predicates valid in Figures 2 and 3. 

Flow att(Actor A,attl,Obj I,Actor A,l,ucl,op I)~ 

Flow att(Actor A,at tl,Actor A,Obj 2,2,ucl,op2)+--

(I) 



www.manaraa.com

isEntity(objl){

isActor(actor A){-

precedes( ucl,uc2){

sameAtt(att3, att3'){

derAtt(att3, att6, control){-

7.7.2 Propagation Policies 

116 

(2) 

(3) 

(4) 

(5) 

(6) 

The second step applies a policy that propagates flows along actor hierarchies. In the 

example, if there is a specialized actor say Actor C of Actor B then Actor C receives att5 

and att6. Policies stating acceptable inheritances can be stated in example rules such as 

(7) to (9). 

Flow(X'a, X obj, X'obj, Xt, X uc, Xop){- Flow(Xa'xobj'x'Obj'xt,Xuc'xop), 

specializedRole(Xa, X'a) 

Flow(Xa, X"obj, X'obj, Xt, X uc, Xop){- FIow(Xa'xobj,X'Obj'xt'xuc, X op), 

isActor(XObj), specializedActor(XObj'x"Obj) 

(7) 

(8) 

(9) 
,isActor(X'Obj),specializedActor(X'Obj,X"Obj) 

Rule 7 says that every actor that plays a specialized role of an actor that initiates a flow 

also initiates an inherited flow. Tn rules 8 and 9, for every flow from or to an actor, 

respectively, rules 8 and 9 add new information flow for every specialized actor of the 

actor who sends or receives the information, respectively. 



www.manaraa.com

117 

7.7.3 Transitive Flow Policies 

Policies written for thc third step recursively construct transitive flows from basic ones. 

This step is sufficiently flexible to accommodate various options discussed in Section 

7.4.5. Due to space constraints I show some examples in rules 10 through 13. Rule 10 

dcclares a basic flow to be a transitive flow and rules 11 specifies all possible information 

flows betwecn any types of objects and rules 12 specifies possible flows that goes 

through an intermediate object that is not an actor or an entity. The flow between Obj5 

and Obj4 are examples of such flows. Rule 13 specifics all flows that respect the 

precedent order between their use cases. The flow between Obj 1 and Obj3 is such an 

example. 

mayFlow(Xa, X obj, X'Obj, Xt, X uc)+-- Flow(Xa'xobj,X'Obj,Xt,Xuc,xop) 

mayFlow(Xa, X Obj, X'Obj, Xt, X uc)+-- Flow(Xa'xobj'xBTWObj,Xt,Xuc,xop) (II) 

mayFlow(Xa,xBTWobjoX'Obj,X't'xuc), Xt < X't 

mayFlow(Xa, X Obj, X'obj, Xt, X uc)+-- Flow(Xa'xobj'x'Obj'xt'xuc.xop) 

mayFlow(Xa, X obj, X'Obj,xt, X uc)+-- Flow(Xa'xobj'xBTWObj'xt,Xuc'xop), (12) 

mayFlow(Xa'xBTWobj,X'obj,X't'xuc), 

X t < X't, ~(isActor(XBTWObj); isEntity(XBTWobj» 

mayFIOWinteruc(Xa'xobj,X'objoXt'xuc)+-- Flow(Xa'xobjoX'Obj,Xt,Xuc'xop) 

mayFIOWmteruc(Xa'xobj,X'Obj'xt,Xuc)+-

FIow(Xa'xobj'xBTWObj'xt'xuc,xop), 

mayFIOWinteruc(Xa'xBTwobjoX'Obj,X't,X'uc), 

((Xt<X't, Xuc=X'uc); precedes(Xuc'x'uc» 

(13) 



www.manaraa.com

118 

Previous examples show coarse-grain flow policies. I now show some fine-grain flow 

polices. The first example permits flows using different attribute names to contam the 

same value from the similar attribute table. Rule 14 states that if all3 and att3' 10 F1gure 

7.3 have the same value then the flow of att3 from actor A to Obj5 is permitted. 

mayFlow(Xa, X att. X obj. X·obj. X t. Xuc)~ 

Flow(Xa. X att. Xobj. X'obj. X t• Xuc,xop) 

mayFlow(Xa. X att. Xobj. X·Obj. X t. Xuc)~ 

Flow(Xa. X att. X Obj. XBTWObj. Xt. Xuc,xop) 

mayFlow(Xa,X'att,xBTWObj,x'obj,x't,xuc), 

Xt<X't. (sameAtt(Xatt,X'att); Xatt=X'att) 

( 14) 

Rule 15 specifies that all transitive flows are accepted provided that attribute derivation is 

confined to intermediate objects. For example, if Figure 7.3 had an entry in the derived 

attribute table stating that ott6 is derived from att3 in the control object, the flow from 

actor A to actor B is permitted. 

mayFlow(Xa. X att. Xobj. X·Obj. X t. Xuc)~ 

Flow(Xa,xatt. X Obj. X'Obj, X t. Xuc,xop) 

mayFlow(Xa. X att. Xobj. X·obj. X t• Xuc)~ 

7.7.4 Finalizing Flows 

Flow(Xa• X att. X obj. XBTWobj. X t• Xuc,xop) (15) 

mayFlow(Xa,x·att,xBTWObj,x·obj,x·t,xuc). 

X t < X't. (sameAtt(Xatt. X'att); 

Xatt=X·att. derAtt(Xatt. X·att. XBTWObj» 

After proPJg.ltmg flows along inheritance hierarchies and extending them to become 

transitive by usmg recursive rules, the fourth step provides filtering policies to choose 



www.manaraa.com

119 

desired flows. An example is rule 16 that chooses all possible information flow that statts 

and ends in actors, entities or both inside a single use ease. Rule 17 does the same, but 

across use cases. 

finalFlow(X., X obj, X'Obj, X t)+-- mayFlOw(Xa, X Obj, X'obJ' X t, Xuc), 

(isActor(XObj ); isEntity(XObj) ),(isActor(X'Obj); isEntity(X'Obj» 

finalFlowinterUC(Xa, X Obj, X'obj, X t)+--

mayFlowinteruc(X., Xobj, X'Obj, X t, Xuc), 

(isActor(XObj); isEntity(Xobj», 
(isActor(X'Obj); isEntity(X'Obj» 

7.7.5 Detecting Unsafe Flows with Respect to Policies 

(16) 

(17) 

This section shows FlowUML specification of known flow control policies, and how to 

detect unsafe information flows with respect to them. 

Mandatory Access Control (MAC) restricts subjects III accessing objects that are 

classified higher than them [BL 75]. In order to do so, all objects are labeled with 

sensitivity levels and all users have clearance levels. Rule 18 ensures that, if information 

flows from ~b} 1 to Ob}2 and the Ob}2 does not dominate or equals the security label of 

Db} 1, this is considered unsafe. 

UIlsafeFlow(Xa, Xobjl, X obj2)+-- finalFlow(Xa, XObjl, X obj2, X t), 

-.dominates(XObjl, X Obj2) (18) 

Discretionary access control (DAC) allows subjects to access objects solely based on 

the subject's identity and authorization. Object owners have the discretion to allow other 



www.manaraa.com

120 

subjects to access their objects usmg access control lists (ACL). Rule 19 specifies 

unauthorized information flows [rom an actor to an object and rule 20 specifies 

unauthorized flows from an object to an actor. 

unsafeFlowatt(Xa, X att1, XObjl, XObj2)~ 

finalFlow(Xa, Xattl, XObjl, X obj2. X t), ~ACL(XObjJ, X Obj2, w) (19) 

unsafeFlowatt(Xa, X att1, X Obj2, X Obj1 )+-

finalFlow(Xa, X attl, X Obj2, XObjl. X t), ~ACL(XObjl' X obj2, r) (20) 

Static separation of duty (SsoD) prevents actors that have conflicts, e.g., the account 

payable manager and the purchasing manager accessing the same object. Policies can 

restrict a particular information flow between two conflicting actors such as is specified 

in rule 21. 

unsafeFlow(Xa, X Objl, X Obj3)+- finalFlow(Xa, XObjl, X obj2, X t), 

finalFlow(Xa, X obj2, X Obj3, X't), conflictingActors(XoQil, X obj3), 

isActor(XObjl), isActor(Xobj3),Xt<X't 

(21 ) 

Anothcr example policy restricts passing two attributes by the same actor, as statcd in 

rule 22. A third example in rulc 23 prevents two conflicting actors from passing the same 

attribute to the same object. 

unsafeFIOWSatt(Xa,Xattl'xobjl'xObj2, X'a,Xatt2, XObj3'xObj2)~ 

finalFlow(Xa, Xattl, X Obj1, X obj2. X t), 

finalFlow(X'a, X att2, X Obj3, X Obj2. X't), 

isActor(Xobjl), isActor(XObj3), Xobjl=Xobj3. Xattl",Xatt2 

(22) 



www.manaraa.com

121 

unsafeFloWSatt(Xa'xattl,Xobjl,XObj2, X'.,Xattl'xobj3,Xobj2)+-

finalFlow(X., X attl, X obj1, X Obj2. X t), 

finalFlow(X'a, X.ttl, X Obj3, X obj2. X\), (23) 

conflictingActors(Xobjl, X Obj3), 

isActor(XObj1 ), isActor(XObj3 ) 

In detecting unsafe infonnation flows, FlowUML raises an alert to the analyst to resolve 

it and run FlowUML again. However, the analyst can tolerate particular violations, as 

shown in rule 24 that modifies rule 18. Rule 24 states that, if an infonnation flows from 

~b) I to ~b) 2 and Obj2 docs not dominate or equals the security label of ~b) I and the 

security analyst has not tolerated it before, it is an unsafe flow. I allow this option 

because some specification methods tolerate known inconsistencies 

[NEDI ,[GH9l ,GH92]. 

unsafeFlow(Xa, Xobjl, X obj2)+- finalFlow(Xa, X Obj1, X obj2. X t), 

~domi1lates(XObjl'xObj2)' ~ignoreFlow(Xa'xobj,X'Obj) (24) 

Rules 25, 26 and 27 declare any flow that includes an unsafe flow fragment to be unsafe. 

Rules 28 and 29 are related to unsafeFlows predicate that detects two flows to be 

unsafe, the rules mark every single flow in that predicate as a single unsafe flow. 

unsafeFlow(Xa, Xobjl, X ObJ3)+- mayFlow(Xa, X obj1, X obj3, X t), 

unsafeFlow(Xa, X oQj2, X Obj3 ), (25) 

mayFlow(Xa, X Obj1, X obj2, X t) 

unsafeFlow(Xa, X obj2, X obj4)+- mayFlow(X., X obj2, X Obj4, X t), 

unsafeFlow(Xa, X obj2, X Obj3), (26) 

mayFlow(Xa, X obj3, X Obj4, Xt) 



www.manaraa.com

unsafeFlow(Xa, X objl, XObj4)~ mayFlow(Xa, Xobjl, X obj4, X,), 

unsafeFlow(Xa, X obj2, X obj3), 

mayFlow(Xa, XOb)l, X obj2, Xt), 

mayFlow(Xa, X Obj3, X Obj4, X,) 

122 

(27) 

, (28) 
unsafeFIOWSatt(Xa,Xattt,xobjl,XObj2,X a, X att2, XObj3,XObj2) 

unsafeFlowatt(Xa, X att2, X obj3, Xobj2)~ 

unsafeFIOWSatt(Xa,xattt,xobjl,xobj2,x'a, X att2, X obj3,xObj2) (29) 

The last step is a completion rule specifYing that every flow is safe provided that it cannot 

be derived to be unsafe, as shown in rule 30. 

safeFlow(Xa, X Obj, X'Obj)~ ~ unsafeFloW(Xa,xobj,x' obj) (30) 

7.8 The larger scope of FlowUML 

This section describes the larger scope and applicability of FlowUML in incorporating 

security models to the software development life cycle. First, as shown in Figure 7.5 

FlowUML transforms the geometric information in the UML views to a set of predicates 

that can be used as basic predicates in flow control policies written as Hom clauses. I 

have shown how such policies can be used to derive compliance of sequence diagrams to 

flow control policies. Because the UML pictorial sequence diagrams are saved as text 

files (such as .mdl files of Rational Rose [Ros03]) with an appropriate translator, I can 

now automate policy compliance checking of flow control policies by using appropriate 

logic programming engines, such as Prolog. 



www.manaraa.com

E~EJG 
: re~' i i 
~ ________ ~ I :, 

: wr4e 

CilIa_control 

" 
The Sequence diagram of use case A 

I The now of use case ~ 
A III the I'orm of 

FlowUML predicates 

Enforce<! on 

/ 
Enforced on 

" 
I
f Information~\ 

flow control 
policy C 
~-

E~3G 
: read: ' I 

! Ii 
iE----------! ' 
, "''' 

The Seq uence diagram of use case B 

The flow of use case 
B in the form of 

FlowUML predicates 

Enforced on Enforced on 
\ 

Example (~~FIOW '\1, 
- - - - • hnalFlcow 

",n~.l'(.>FIow : 
<..ar~FLc...... ,: 

123 

Information 
flow control 

policy A 

Example unsafeFIow(Xa, Xobj1, Xobj2) +-
j- - - - --I finalFlow(Xa, Xobj1, X0b;2. XI). 

dominatesjXobj 1 ,Xobj2), 

Figure 7.5. FlowUML', Scope 

Second, other than the basic predicates used to capture the geometric information given 

in the UML sequence diagrams, other Hom clauses of FlowUML constitute policies that 

are applicable at the early stages of the software design cycle. Thus, this division of 

predicate layers shows the clear separation of the basic geometry of the design from 

policy. As shown in the right hand side of r'gure 7.5, the latter constituting of recursive 

rules are applied to a de'lgn constitutmg mstances of basic predicates. Therefore, 



www.manaraa.com

124 

FlowUML can be considered an example framework to write policies applicable to the 

UML. 

This separation of policy from the application has many consequences. The first is that it 

facilitates applying any policy to any de"gn As shown in Figure 7.5, policies Band C 

can be separately applied to the sequence diagram of use case A. Similarly, as shown, 

policies A and B can be separately applied to the sequence diagram of use case B. This 

shows that more than one policy applies to one design diagram and that one policy 

applies to more than one diagram. 

Third, the same process can be used to check the consistency of two design diagrams 

with respect to a given security policy. That is, if two design diagrams are compliant with 

a given policy, as far as that policy is concerned, they are indistinguishable. I developed 

this concept further in designing a notion of policy based equivalence of design diagrams 

in the UML. 

Fourth, if the UML policies can be separated from designs as shown here, a policy 

composition framework for the UML policy compositions along the lines of 

[BCVSOOj,[WJ02j can be developed. 

Last, by capturing more rules related to geometry of sequence diagrams, one may be able 

to capture deficiencies in the diagrams. If successful, this may lead to a policy-based, 

reverse engineering, framework for the UML diagrams. 



www.manaraa.com

125 

7.9 Conclusions 

FlowUML is a logIc programming based framework to specify and verify the compliance 

of information flow requirements with the information flow control policies in the UML 

based designs at the carly phases of the software development life cycle. I have 

demonstrated the flexibility and the expressiveness by showing how existing information 

flow control policies can be verified with FlowUML specifications. 

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


www.manaraa.com

Chapter 8 

INTEGRATING THE ANALYSIS OF ACCESS AND 
FLOW CONTROL POLICIES 

The previous two chapters addressed both policies separately. However, because both 

policies have a tight relationship between them, integrating the analysis of both policies 

will improve the validation and enforcement of access and flow control policies during 

the software development life cycle. I integrate in this chapter both AuthUML and 

FlowUML. I provide a collaboration framework and I show how to transform one 

framework output to other framework. Also, I show the flexibility and scalability behind 

the new integrated framework of AuthUML and FlowUML. 

The integration is desired because, as I will show shortly, both access and flow control 

policies are tightly coupled to each other at the design stage, they both overlap, and each 

one relies and/or provides useful information to the other. 

The reminder of the chapter is organized as follows. A running example to be used during 

the chapter is presented in Section 8.2. The integration of between AuthUML and 

FlowUML is described in Section 8.3. Section 8.4 describes the flexibility and scalability 

of the two frameworks. 

126 

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333


www.manaraa.com

Chapter 8 

INTEGRATING THE ANALYSIS OF ACCESS AND 
FLOW CONTROL POLICIES 

The previous two chapters addressed both policies separately. However, because both 

policies have a tight relationship between them, integrating the analysis of both policies 

will improve the validation and enforcement of access and flow control policies during 

the software development life cycle. I integrate in this chapter both AuthUML and 

FlowUML. I provide a collaboration framework and I show how to transform one 

framework output to other framework. Also, I show the flexibility and scalability behind 

the new integrated framework of AuthUML and FlowUML. 

The integration is desired because, as I will show shortly, both access and flow control 

policies are tightly coupled to each other at the design stage, they both overlap, and each 

one relies and/or provides useful information to the other. 

The reminder of the chapter is organized as follows. A running example to be used during 

the chapter is presented in Section 8.2. The integration of between AuthUML and 

FlowUML is described in Section 8.3. Section 8.4 describes the flexibility and scalability 

of the two frameworks. 

126 



www.manaraa.com

127 

8.1 Running Example 

In this section, I introduce an example to be used during the rest of the chapter. Figure 8.1 

shows an example of an abstract use case. It shows the different use cases and the actors 

who are allowed or not allowed to invoke them. The example represents a purchasing 

process where a Clerk prepares an order, and then a Purchasing Officer places the order. 

Later, the Clerk writes a check for the order and the Manager signs it. The actors (roles) 

are ordered in a hierarchy where every actor inherits the permissions of its higher actors. 

For example, the Purchasing Officer inherits the authorizations of the Clerk and, thus, the 

Purchasing Officer is allowed to prepare orders and write checks implicitly. The links 

between actors and use cases is considered as permission while the link with Deny is 

considered a denial execution. Each use case consists of one or more operations to 

achieve the objective of the use case. Sometimes an operation can be part of two use 

cases. Figure 8.2 shows the sequence diagram of the Prepare order use case. 



www.manaraa.com

128 

Purchasing Officer 

Manager 

Figure 8.1 Use Cases of the Purchasing Process 

~GEE~ 
, raad(atl1) , , , 
I I I I 
I .1 I I 

:Return(att2,att3): : : 
~ ________ J I I 

: write(att4) : : 
: : ~: : 
, , I call(aUS) I 
I I I J 
I I !lit 
I " I , 
I I 

Figure 8.2. Example of Sequence Diagram 



www.manaraa.com

129 

The following is the result of extracting the information flow from the sequence diagram 

in Figure 8.2 that shows an example of a sequence diagram corresponding to the Prepare 

order use case. 

FloWatt(Clerk, ath Clerk, Obj j , 1, "Prepare order", read)~ (6) 

Flowatt(Clerk, att2 , Obj j , Clerk, 2, "Prepare order", read)~ 

Flowatt(Clerk, att3, Obh Clerk, 2, "Prepare order", read)~ 

Flowatt(Clerk, att4,Clerk,control,3,"Prepare order", write)~ 

Flow att( Clerk,att5 ,controlJn ventory staff,4,"Prepare 

order",call)~ 

8.2 AuthUML and FlowUML Collaboration 

AuthUML analyzes the access control, but does not analyze the control of information 

flow. For example, Actor A has an authorization to access operation opl, but the 

invocation of opl will result in sending information to actor B who may not be allowed to 

sec that information. Conversely, FlowUML provides deeper analysis of authorization 

because it goes deep in to the attribute level of operations and considers implicit 

operations that arc not directly called by actors that occur as consequences of initiated 

operations. Thus, FlowUML provides new useful information to AuthUML that will not 

be available otherwise. Therefore, FlowUML complements AuthUML by providing it 

with information that was unavailable otherwise. 

FlowUML is applied between phase 2 and 3 of AuthUML for several reasons. First, 

FlowUML lists all operations of a use case that are taken from the sequence diagram. 



www.manaraa.com

130 

Second, it reduces redundancy by extracting operations of use cases and improves 

analysis efficiency by ensunng the proper flow of infonnation before analyzing the 

authorizations operation level. Third, FlowUML provides new valuable data to 

AuthUML that in tum well validate more access control policies. 

8.2.1 Collaboration Process 

The collaboration between AuthUML and FlowUML is shown in Figure 8.3 and in more 

detail in Figure 8.4. Because the new collaboration process requires inserting FlowUML 

between phases two and three of AuthUML, the combined process consists of five stages. 

Sequence 
Diagrams 

~ development 

! H \ ; Use Case AuthUML ' RowUML AUthUML K. ~ development " use case level ) Fine-gra;n polides r- opercIDon level 

~ 
I 

Figure 8.3. AuthUML and FlowUML Collaboration 



www.manaraa.com

131 

AulhUML (Phase 1) 
.. ;1 __ ... , i;.:R,epreSenting Authorization - Ersullrg COIl~I::.tent and I 

/ Requirements(AR) . KJ) Requirements 0 (o('"lcl free AR 

[ __ '\'!lur~l~guap, I L.::========'----_-==+==+=====..l 
Authorization 

1-----------------' 
Validating 

Fixing Jf 
Authorization _-
Requirement 

<3 

Consistency ~ I -
between AR and the Decision making , nRconslls~ncy 

Finalized j eso utlOn 

iG Authorization AuthUML - use case level (Phase 2) 

(]Fropagation 

cl: 
I un Resolve I 
l@sateftows 

I~ 

1 
-~ --, r Defining ~ - - F- --Flow trans~v~ J.........J InallZlng 

t ct flow policies I -------"-1 rri. Flow 
nSlru( ure \.?J 
'"'--_/ - _/ 

FlowUML 

H Detecting 
l~afefiOW t
~ Jot 

Unsafe flow is delected----------' 
Safe Flow 

r
_J---'=;------i----ri2:iEnSUring conflict-free inconsistency 

12 authorizations 11 Resolution 

Updating 
Authorization AuthUML - operation level (Phase 3) 

equirements 

Finalized Authorization 

Figure 8.4. Comprehensive AuthUML and FlowUML Collaboration 

8.2.1.1 The Collaboration of Predicates 

AuthUML and FlowUML are integrated well with each other to improve the analysis of 

both access and flow control policies. Both frameworks' predicates collaborate 

seamlessly with each other where one predicate is built on top of the other one. Figure 8,5 

shows how the predicates of both frameworks are merged into one strata to provide the 

needed collaboration_ 



www.manaraa.com

FlowUML Predicate 
FI ~ 0"- d' t up pre lea es 

[on"t~up predicates r---;,. . 
FI'lW_ 
luay Floy-i 

ma.YFlow 'eHe • 

finalFIOWatt 

finalFlOWiDh>T>TTf' aJ".t.. • 
tmsnfeF10w, r 

un"fetlows, 
r- sJieFlr)w, , --

• 
• 

--
13 

14 

15 
16 
17 
18 
19 
20 

rpl"nr<,rli 

hie-predicates 
c~n.predlcate_s __ 
<lJ.-llr1C(1nUC 
conOpinUC: 

fm3.l.Flowatt 
f'malFlow "110 

unsafeFlowatt 
UIlBafeFlows 
safeFlow 
dercandoop 
do (X,+X ) 
doop(X, -x ) 
cannotReslove 
alertop 

r-----
- - ---

rei-predicates 
hie-predicates 

Figure 8.5. AuthUML and FlowUML Collaboration Predicates 

8.2.2 The Collaboration Process in Detail 

8.2.2.1 Use Case Development 

132 

Before any analysis, I assume that the use cases are already developed for the system that 

will be analyzed, but at this level the use case can be in an abstract form where only the 



www.manaraa.com

133 

use case objective and the authorized actors are defined. Figure 8.1 shows an example of 

a use case in such an abstract view. 

8.2.2.2 Applying AuthUML at the Use Case Level 
Because only the abstract use cases are developed at this time, only the first and second 

phases of AuthUML are applied. This stage analyzes the authorization requirement of the 

use case and ensures that they are consistent, complete and free of application-specified 

conflicts. The fmalized authorizations produced by this ,Idge are in the form of douc(Xs• 

±Xuc). This outcome will be used in the FlowUML to validate the correctness of the 

sequence diagram from the point of view of authorization of information flow. 

8.2.2.3 Sequence Diagram Development 

After the use cases are developed at the abstract level, the next step is to develop the 

details of each use case by identifYing the operations and the information flow between 

them. Such details are represented by one of the interaction diagrams type. For my work, 

I choose sequence diagrams. Figure 8.2 shows an example of a sequence diagram of a 

Prepare order use case. Every use case in Figure 8.1 is represented in a sequence 

dJJgr dnl that shows all operations of a use case and how they interact with objects. 

8.2.2.4 Applying FlowUML 
F10wUML extracts the information flow between objects within a use case and between 

use cases to validate the enforcement of information flow control policies and to ensure 

that every flow is safe. Also, FlowUML identifies all operations that are part of a use 

case. Note that at this stage both coarse and fine-grain policies apply. However, because 



www.manaraa.com

134 

the third phase of AuthUML addresses the operation level access content, I choose to 

demonstrate only the analysis of fine-grain policies ofFlowUML. 

After extracting the information flow from the sequence diagram, the original FlowUML 

needs to detect all derived (implicit) authorizations of all actors from the actor hierarchy. 

However, because AuthUML has already derived those authorizations at the second 

"dgc' r can derive the inherited authorized information flow by using the finalized 

authorization predicates produced by AuthUML. The following rules show how to derive 

inherited information flow using AuthUML predicates. 

Flow att(XS'xatt'xobj,X' Obj'xt'x uc'xop) ~ 
Flowatt(X's'xatt'xobj,X'Obj'xt'xuc'xop) (7) 

FIOWatt(Xs'xatt'xs'x'Obj'xt'xuc,Xop)~ douc(Xs,+ Xuc), in(Xs, X"s) 
FIOWatt(X's'xatt'x"s'x'Obj'xt'xuc'xop) (8) 

(9) 

Note that the inherited authorization was first derived during the first phase of AuthUML 

then finalized in the form of douc(X,,+ Xuc) at the end of that phase. 

The previous rule states that, if there is an actor who is authorized to invoke a usc case 

and there is a flow of an operation that is part of the same use case and it is initiated by 

any actor (not necessary the same actor of the use case), there will be a new flow 

predicate that states that the authorized actor of the use case will be authorized to initiate 

the same flow of that operation. For example, the Prepare order use case in Figure 8.1 

has several operations as shown in Figure 8.2. The operation read(attl) is extracted as: 



www.manaraa.com

135 

Flowatt(Clerk, att[, Clerk, Obj[, 1, "Prepare order", read) (10) 

Given that the Purchasing officer has an implicit authorization to invoke the Prepare 

order because s/he is a specialized actor of Clerk, AuthUML authorization is written as: 

douc("Purchasing officer",+ "Prepare order") (11 ) 

Thus, by combining predicates to and II, the Purchasing officer will also be authorized 

to initiate the read operation that is written as: 

Flowatt("Purchasing officer",attt."Purchasing officer",Objd, 

"Prepare order",read) 
(12) 

From the collaboration prospective, FlowUML identifies all operations of the use ease 

and presents it as an instance of the FloWatt(Xs'xatt'xobj,X'Obj'xt,Xuc'xop). 

FlowUML provides data to AuthUML that allows the validation of more access control 

policies, that were not available without FlowUML. I show some examples as follows: 

Access Control List (ACL) of each operation: It enumerates all allowed actors who can 

access a particular operation. 

ACL(Xa,Xop)'-" FloWatt(Xa'xatt'xobj'x'Obj,Xt,Xop) 

ACL(Xa,Xop)'-" FloWatt(Xa'xatt'xobj,X'Obj,Xt,Xop), isActor(XObj ) 
(13) 

All information received by an actor: It lists all attributes that may flow to a particular 

actor. For example, it states whether an actor may receive the trade secret attribute. 

recList(Xa'xatt)+-finalFlow att(Xa'xatt'xobj,X'Obj,Xt),isActor(X'Obj) ( 14) 

All information sent by an actor: It lists all attributes that an actor may send. For 

example, it states whether an actor may write/modify the salary. 

sentList(Xa,XattXobj)+-finaIFlowatt(Xa,Xatt,Xobj,x'obj,Xt), (15) 

isActor(Xo bj) 



www.manaraa.com

136 

8.2.2.5 Applying AuthUML at the Operation Level 
At this stage, AuthUML is applied again, but at the operation level. Although, the flow 

between objects is safe after applying FlowUML, the derived information may violate the 

operation level authorizations. Thus, AuthUML is applied at the last phase to ensure 

consistent, complete and conflict-free authorizations at the operations level. 

Because transformation from FlowUML to AuthUML (phase 3) provides all the 

operations of use cases, the transformation eliminates the first step in phase 3 of the 

original AuthUML that derives authorizations of all operations of a use cases. This 

transformation follows rule 16. 

dercandoop(Xa,+Xop)~ Flowatt (Xa, X att, Xobj, X'Obj, Xt, X uc, Xop) (16) 

The previous rule says that, if there is a flow that is a part of an operation op and it is 

initiated by an actor A, there is a positive authorization of actor A to invoke op. For 

example, consider the Prepare order use case which was shown in Figure 8.2 and written 

in FlowUML in the form of FIOWatt(Xa,xatt,xobj,X'Obj,Xt,xuc,xop) predicate as in 6. 

Note that the Flowatt predicate specifies the use case and the operations that are affected 

by the flow. Thus, from that attribute of Flowatt , I can deduce the operations of use 

cases. The following are the results of applying rule 16 based on the predicates in 6. 

dercandoop(Clerk, read)~Flowatt(Clerk, ath, Clerk, Objl, 1, 

"Prepare order", read) 

dercandoop(Clerk, write)~Flowatt(Clerk, att4, Clerk, control, 

3, "Prepare order", write) 

dercandoop( Clerk, calI)~Flowatt( Clerk, att5, control, 

Inventory staff, 4, "Prepare order", call) 

(17) 



www.manaraa.com

137 

In addition, rule 16 will be applied to any derived information flow. In the following rule, 

the body is already derived from rules 7, 8 and 9: 

dercandoop(Purchasing officer, read)o(-Flowatt(Purchasing 

officer, ath Clerk. Objl. 1. "Prepare order". read) 
(18) 

AuthUML considers positive and ncgative authorization, while FlowUML considers only 

positive flows. The previous rule transforms only the positive authorization. However, a 

workaround is possible to derive negative authorization to operations, as shown in rule 

19. The rule says that for every flow that is part of an operation and where that operation 

is part of a use case and there is an actor who has a negative authorization to that use 

case, I can deduce that there is a negative authorization for the same actor to invoke the 

operation. In another words, I refer to the flow predicate merely to know which operation 

is part of the use case that has a negative authorization for that actor. For example, in the 

running example in Figure 8.1, there is a negative authorization for Manager to invoke 

use case Write check. This negative authorization is written as douc(Manager.-

"Write check"). Suppose there is a flow inside that usc case written as Flowatt(Clerk, 

att], Obj,. Obj2. 1. "Write Check", issue). Thus, I can deduce from the two available 

predicates that the Manager cannot invoke operation issue. 

dercandoop(X'a.-Xop)o(- Flow.tt (X •• X.tt• XObj. X'Obj, X t, X uc. X OP). 

douc(X·a.-Xuc) 
(\9) 



www.manaraa.com

138 

8.3 The Flexibility of AuthUML and FlowUML 

Both AuthUML and FlowUML analyze the requirement specification and ensure the 

proper compliance with both access and flow control policies. However, this is not the 

total advantage of both frameworks because they arc also designed with flexibility in 

mind. The flexibility is achieved in three ways. f ,rst, by transforming UML geometries 

(use case and sequence diagram) into a set of logic-based predicates, the predicates 

providc flexibility becausc they are potentially amenable to automated reasoning that is 

useful in analysis [RusO I] [NEOO]. Second, by transforming the policies from text-based 

to a set of Prolog-style rules, this allows the enforcement of policies and the validation of 

requirements against policies to be applicable and less complicated. Third, flexibility is 

achieved by IsolatlOg the requirement specifications - that are written in predicates -

from the policies - that is written in rules. The isolation is the core flexibility of the 

frameworks that allows the application of different polices for each portion of the 

requirements. 

hgurc 8.6. Illustration of the isolations and flexibly of the frameworks. The figure 

consists of three columns. The first column represents the geometry of UML that is used 

in my frameworks (the use case and the sequence diagram). First, each abstract use case 

is instantiated by a sequence diagram to illustrate the information flow of the use case. 

Second, the sequence diagram can be used to identifY the required operations of each use 

case. 



www.manaraa.com

139 

In the second column, it transforms the requirements expressed in UML into predicates. 

First, it transforms the authorization of each use case or group of use cases into 

AuthUML predicates. Such transformed authorization can be separated into groups or 

combined together; groups are desired to apply different policies or to validate different 

policies to each group. For example, one can apply strict policies on sensitive use cases, 

while applying less restrictive policies on public-usc use cases. Second, the sequence 

diagram of each use case is transformed into FlowUML predicates. The same applies 

here concerning whether to separate each use case flow or to combine all them together 

to create a broader analysis. Third, the authorization of operations is transformed to 

AuthUML predicates. Also, the decision of combining predicates can be made here. 



www.manaraa.com

r 

140 

UML Geomelnes ~uthUV'_ and FlowUML predicates Various policies 

~-- ... ~ .. " 
~--+--~ 

Do Do Do 

,- I 
Use C ase~ , Transl0rm 

TIl Qse c~~0 I 

n 
Translonn 

IJ 

G~ 
; • .::~, ~ Tran~fonn 

~-- ~"""''') 

TrCl"sfo'm 

Transform 

Op Op ~ 

Transform 

a ~t..",., o:"J,rat~; represent 
tt>e aul '..I ' • .1' ,n af use cases 
p\ jl'rca.n.dur' 

J, ~ c 

~~~-., " 

me ,,,forma~oo Hf)W of <"ogle
u~ws'" LSf'f:)fP''''''.;:I'''''

F, f .. '~fF, w:
'J J, II ,
-~

a sel of pre(loCale~ reprl:'s.enl
me authorizaho" crI ooeraoons

Bx ca.n.doap.. dercand()j.l
do"p etc

a set of predicates represent
the authorization crI operations

Propagation policies

Inconsistencies
resolution polICIes

~,
\ \~ OeaslOO maKtng \ \ 1 poltCieS

\~\'~-)

Y Use case confhc1 n'
polico/:ls II

J
~----:-,j

Idennty,oq flow
p(lhoes

Inlo<maho" lIow
comrol pohOf'tS

Operahon
Inconsl$lency

reSOlunon poI)hoes

Px ca.n.doop dercand"" ll-----~
doop .etc

Ooeralion conflict
polICIes

Figure 8.6. The Comprehensive Scope of Applying AuthUML and FlowUML

The third column of Figure 8.6, shows the various policies that are written in Prolog-style

rules. As shown in the figure, a policy can be applied to any portion of the requirements

that are specified in predicates in the second column. Also, each portion of the

requirements can be enforced or validated by different policies. For example, one can

www.manaraa.com

141

apply the negative takes precedence policy in case an inconsistency occurs in just one

portion, while applying another policy for other requirements. Note that the policies in

the third column consist of two types. The first type will be used to validate the

compliance of requirements, e.g., Mandatory Access Control (MAC) or Discretionary

Access Control (DAC) policies. Thc second type is enforced in the analysis process, e.g.,

whether to apply the permission take precedence or the negative takes precedence.

This separation of policy from the application has many consequences. The first

consequence IS that it facilitates applying any policy to any design. The second

consequence is that the same process can be used to check the consistency of two design

diagrams with rcspect to a given security policy. That is, if two design diagrams are

compliant with a given policy, as far as that policy is concerned, they are

indistinguishable. I developed this concept further in de,lgnmg a notion of policy-based

equivalence of design Jlagf.lnIS in UML. The third consequence is that, if UML policies

can be separated from desIgns as shown here, a policy composition framework for UML

along the lines of [BCVSOO],[WJ02] can be developed. The last consequence is that, by

capturing more rules related to geometry of sequence diagrams, one may be able to

capture deficiencies in the diagrams. If successful, this may lead to a polieybased, reverse

engineering framework for UML diagrams.

8.4 Conclusion

In this chapter, I showed how access and flow control policies can be verified during the

software development process. I showed how to improve the analysis of both policies by

www.manaraa.com

142

combing two existing frameworks (AuthUML and F1owUML). Such collaboration

provides a more accurate analysis of access and flow control policies. FlowUML

provides rich information about the authorizations details that are provided to AuthUML

and were unavailable without FlowUML. Also, AuthUML analyzed abstract

authorizations before analyzing the information flow, and analyzed the details of

authorizations after the information flow is analyzed by F1owUML. I defined the process

of collaborating both AuthUML and FlowUML and the necessary rules to transform the

output of each framework to the other. I also showed how those two frameworks can

provide the flexibility and scalability to enforce security policies.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Chapter 9

CONCLUSION

This chapter summarizes my contributions, in section 9.1, and possible future extensions

of this dissertation, in section 9.2.

9.1 Conclusion

Security features must be considered with other software requirements during the

software development process to improve the security of the software and to reduce the

cost of patching vulnerabilities. This dissertation focused on In'''~ratll1g both access and

flow control policies during the requirements specification analYSIS and design phases of

the software development process. The two main themes of this dissertation are, first, to

provide unified representation and specification of both access and flow control policies

and, second, to provide frameworks to verifY the compliance of access and flow control

requirements with the access and flow control policies.

To provide a unified representation of access and flow control policies, I extended the de

facto standard language of modeling, the UML. The advantage to extend the UML is to

ease the adoption of the extension by the software developers. The extension provides the

necessary elements and a methodology to verifY and design both access and flow control

143

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Chapter 9

CONCLUSION

This chapter summarizes my contributions, in section 9.1, and possible future extensions

of this dissertation, in section 9.2.

9.1 Conclusion

Security features must be considered with other software requirements during the

software development process to improve the security of the software and to reduce the

cost of patching vulnerabilities. This dissertation focused on In'''~ratll1g both access and

flow control policies during the requirements specification analYSIS and design phases of

the software development process. The two main themes of this dissertation are, first, to

provide unified representation and specification of both access and flow control policies

and, second, to provide frameworks to verifY the compliance of access and flow control

requirements with the access and flow control policies.

To provide a unified representation of access and flow control policies, I extended the de

facto standard language of modeling, the UML. The advantage to extend the UML is to

ease the adoption of the extension by the software developers. The extension provides the

necessary elements and a methodology to verifY and design both access and flow control

143

www.manaraa.com

144

policies correctly. The extension focuses on static and dynamic access and flow control

policies, where other work focuses on static policies only. I believe that the extension

encourages the software analyzer to integrate acccss and flow control policies with other

functional requirements. I have shown how the new extension specifies and models

existing access and flow control models, such as Role-based Access Control (RBAC),

Information Flow Control for Object-Oriented Systems, and Distributed Authorization

Processor.

To provide formal verification and detection of improper access and flow control

requirements, I developed two frameworks that are based on logic programming. The

first framework, AuthUML, verifies that the access control requirements are consistent,

complete, and conflict-free. AuthUML allows the analyzer to work at two different levels

of detail, the Use Case level and the operation level, each where it is useful for the

analyzer.. The second framework I developed, FlowUML, verifies the proper

enforcement of information flow control policies at the requirements specification phase

of UML-based designs. Also, FlowUML provides the same flexibility as AuthUML by

providing two levels of analysis. I showed how the two frameworks can be used to verifY

existing access and flow control policies, such as Separation of Duty principle,

Mandatory Access Control (MAC), and RBAC.

The final contribution was the integration of Auth UML and FlowUML to form one

framework. The mlegrdtlon combines the strengths of both frameworks to improve

analysis and detectIOn violations of access and flow control policies.

www.manaraa.com

145

I bclieve that the usage of the frameworks will improve the enforcement of access and

flow control policies because such frameworks detect violations of policies at the early

phases of the software development process and limit them from propagating to other

phases, where the cost of detecting and solving them is amplified.

9.2 Future Work

As stated it on the section 9.1, the need to integrate security into software development is

a large-scope goal. It requires the integration of different features of security such as

access control policies, flow control, privacy, encryption, and availability. Also, it

requires the IJlkgrdtlon of those features in all phases of the software life cycle such as

the requirements specification, analysis, design, implementation, and testing.

I believe this dissertation has met the goal of integrating two security features: access and

flow control policies. Also, it has met the goal of integrating those policies at the first two

phases of the software life cycle: requirements specification and analysis.

In general, there is a room for future research, for example integrating other security

features during all phases of the software life cycle, or integrating access and flow control

policies with different phases.

Othcr UML diagrams, such as the statc chart and deployment diagram, have not been

studied in this dissertation. Also, detailed analysis and representation of the separation of

duty principle with regards to software development is another research area, because

most research in the of separation of duty principle has focused on the system point of

view rather than the software point.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

ABSTRACT

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING

Khaled Alghathbar, Ph.D.

George Mason University, 2004

Dissertation Director: Dr. Duminda Wijesekera

Access and flow control policies have not been well IIllcgr"led into functional

specifications throughout the software development life cycle. Access and flow control

policies, and security in general, are generally considered to be non-functional

requirements that are difficult to express, analyze, and test. Accordingly, most security

requirements are considered after the analysis of the functional requirements. Ignoring

non-functional requirements or paying less attention to them during the early

development process results in low-quality, inconsistent software, dissatisfied

stakeholders, and extra time and cost to re-engineer. Therefore, integrating security with

other functional requirements as early as possible during the software life cycle improves

the security of the software and reduces the cost of maintenance.

The main focus of this dissertation is to incorporate both access and flow control policies

with other functional requirements during the requirements specification and analysis

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

ABSTRACT

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING

Khaled Alghathbar, Ph.D.

George Mason University, 2004

Dissertation Director: Dr. Duminda Wijesekera

Access and flow control policies have not been well IIllcgr"led into functional

specifications throughout the software development life cycle. Access and flow control

policies, and security in general, are generally considered to be non-functional

requirements that are difficult to express, analyze, and test. Accordingly, most security

requirements are considered after the analysis of the functional requirements. Ignoring

non-functional requirements or paying less attention to them during the early

development process results in low-quality, inconsistent software, dissatisfied

stakeholders, and extra time and cost to re-engineer. Therefore, integrating security with

other functional requirements as early as possible during the software life cycle improves

the security of the software and reduces the cost of maintenance.

The main focus of this dissertation is to incorporate both access and flow control policies

with other functional requirements during the requirements specification and analysis

www.manaraa.com

phases of the software development life cycle. I have developed a unified representation

language and formal verification frameworks for both access and flow control policies.

As the Unified Modeling Language (UML) is the de facto standard modeling language, I

extended it with the necessary elements to represent access and flow control policies.

This extension allows software developers to model access and flow control policies in a

unified way. The advantage of extending UML to incorporate access and flow control

policies is easing its adoption by software developers. This extension addresses what

others have not addressed, such as the representation and modeling of dynamic access

and flow control policies, negative authorizations, and inherited authorizations.

In I,,,~l' ,,,ftware systems, there are a large number of access and flow control policies to

enforce; thus, inconsistent, incomplete, and conflicting sets of policies may be specified.

Therefore, there is need for a formal and automated language and tools to detect

problems due to improper policies. For the analysis of access control policies, I

developed AuthUML, a framework, based on logic programming, that analyzes access

control requirements in the requirements phase to ensure that they are consistent,

complete, and conflict-free. The framework is a customized version of Flexible Access

Framework (F AF) of Jajodia et al. and it is suitable for UML-bascd requirements

engineering. It analyzes access control policies at two different levels: Use Cases and

conceptual operations.

For the analysis of information flow control policies, I developed FlowUML, a logic

based system that verifies the proper enforcement of information flow control policies at

www.manaraa.com

the requirements specification phase of UML-based designs. FlowUML uses logic

programming to verity the compliance of information flow control requirements with

information flow polices. FlowUML policies can be written at a coarse-grain level or in a

finer-grain level; these two levels provide a comprehensive and wide application of

policies.

Finally, because of the overlap of access and flow control policies, I integrated the

analysis of both policies into one framework that reduces redundant process, provides

more useful analysis information, and improves overall analysis in general.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABS TRA CT••••...•...................... xi

Chapter 1•••...•.............................••••............................••••••...................•••... 1
INTRODUCTION•..•.•................................••.•.......................•.••••........... 1

1.1 Problem Statement .. I
1.2 Thesis Statement ... I
1.3 Significance of Contributions ... 3
1.4 Summary of Contributions .. 5
1.5 Organization of the Dissertation ... 6

Chapter 2 ... 8
LITERATURE REVIE\V .. 8

2.1 Extending the UML Metamodel and Use Case Model.. 9
2.2 Analyzing Access Control Requirements ... 13
2.3 Analyzing Flow Control Requirements .. 15
2.4 Summary ... 16

Chapter 3 ... 17
BACKGROUND ... 17

3.1 Unified Modeling Language ... 17
3.1.1 Overview of the UML. .. 18
3.1.2 Use Case .. 19
3.1.3 Sequence Diagram .. 22
3.1.4 Object Constraint Language ... 23

3.2 Flexible Authorization Framework ... 24
3.3 Access control policies ... 25

3.3.1 Discretionary Access Control ... 26
3.3.2 Mandatory Access Control ... 26
3.3.3 Role-based Access Control ... 27

Chapter 4 ... 29
EXTENDING THE UML METAMODEL .. 29

4.1 Running Example .. 30
4.2 Extension to the Metamodcl of UML ... 32

4.2. I Security Policy Constraints ... 33

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABS TRA CT••••...•...................... xi

Chapter 1•••...•.............................••••............................••••••...................•••... 1
INTRODUCTION•..•.•................................••.•.......................•.••••........... 1

1.1 Problem Statement .. I
1.2 Thesis Statement ... I
1.3 Significance of Contributions ... 3
1.4 Summary of Contributions .. 5
1.5 Organization of the Dissertation ... 6

Chapter 2 ... 8
LITERATURE REVIE\V .. 8

2.1 Extending the UML Metamodel and Use Case Model.. 9
2.2 Analyzing Access Control Requirements ... 13
2.3 Analyzing Flow Control Requirements .. 15
2.4 Summary ... 16

Chapter 3 ... 17
BACKGROUND ... 17

3.1 Unified Modeling Language ... 17
3.1.1 Overview of the UML. .. 18
3.1.2 Use Case .. 19
3.1.3 Sequence Diagram .. 22
3.1.4 Object Constraint Language ... 23

3.2 Flexible Authorization Framework ... 24
3.3 Access control policies ... 25

3.3.1 Discretionary Access Control ... 26
3.3.2 Mandatory Access Control ... 26
3.3.3 Role-based Access Control ... 27

Chapter 4 ... 29
EXTENDING THE UML METAMODEL .. 29

4.1 Running Example .. 30
4.2 Extension to the Metamodcl of UML ... 32

4.2. I Security Policy Constraints ... 33

www.manaraa.com

VI

4.2.2 History Logs .. 36
4.2.3 Business Tasks .. 36
4.2.4 Conflicts .. 37
4.2.5 Interactions between SPCs, History Logs and Business Tasks 37
4.2.6 Enforcing Access Control Constraints .. 38

4.3 Applying the New Extension to the Running Example 39
4.4 Case Study of Existing Security Models .. 43

4.4.1 Role-based Access Control Metamodel.. .. 43
4.4.2 Workflow Policies .. 45
4.4.3 Representing Distributed Authorization ModeL 48

4.5 Conclusions ... 51

Chapter 5 ... 52
EXTENDING THE USE CASE MODEL .. 52

5.1 Introduction ... 52
5.2 Running Example .. 56
5.3 Formal Steps for Specifying Access Control Policies 57

5.3.1 Writing Access Control Schema ... 57
5.3.2 Developing an Access Control Table and Applying Propagation, Conflict
Resolution and Decision Policies on All Use Cases ... 63
5.3.3 PropdgJllng Authorizations to Operations .. 67
5.3.4 Rc,oh Ing Operations Authorization Conflicts ... 69
5.3.5 Drawmg The Refined Usc Case Diagram ... 73

5.4 Conclusion .. 76

Chapter 6 ... 77
AUTHUML .. 77

6.1 AuthUML Process .. 78
6.2 AuthUML Syntax and Semantics ... 82

6.2.1 Individuals and Terms of AuthUML .. 82
6.2.2 Predicates of AuthUML .. 83
6.2.3 Rule of AuthUML ... 87
6.2.4 AuthUML Semantics .. 88

6.3 Phase I: Analyzing Information in Requirements Documents 89
6.3.1 Representing Authorizations ... 89
6.3.2 Ensuring Consistent And Conflict-Free Access Control Specifications ... 91

6.4 Phase II: Applying Policies to Use Cases ... 93
6.4.1 Propagation Policies .. 93
6.4.2 Inconsistency Resolution Policies ... 93
6.4.3 Decision Policies ... 95
6.4.4 Alerting the Requirements Engineer of Changes to Use Case Accesses .. 96

6.5 Phase III Applying Policies to Operations ... 96
6.5.1 ProPJ1,'.dI In!; Permissions to Operations .. 97
6.5.2 Incoml,kllcy Resolution for Operations .. 97

www.manaraa.com

6.5.3
6.5.4

6.6

vii

Completing Accesses for Operations ... 98
Alerting the Requirements Engineer ofIrrcconcilable Conflicts 98

Cone lusions... 99

C h a pter 7 ... 101
FLO WUML ... 101

7.1 In troduction... I 0 I
7.2 Flow Specification in the UML """""""""""""""""""""""",,"""""""""" 103
7.3 The Running Example" " .. "" " "" " "" .. " .. 1 04
7.4 Notations and Assumptions """""""" .. "" " ,, """"""""" 106

7.4.1 Sources, Sinks and Object Typcs "" """" " " 106
7.4.2 Method Names and Information Flows " """"." " ,,. 106
7.4.3 Complex Message Constructs in the UML """" 106
7.4.4 Attribute Dependencies Across Objects """"""""""",,"""""""""""'" 107

7.5 V erificati on Process"" """" .. "" ".... ",,""""""""" .. ,,"'" 108
7.5.1 Coarse· grain Policy Analysis""" "".. " ,," "" " 109
7.5.2 Fine·grain Policy Analysis """"" .""" .. " """" .. "" 110

7.6 Syntax and Semantics """" .. " "",,................... . " "" "" .. ,,'" 110
7 .6.1 Semantics of FlowUML " " "" """" .. "." "" " .. ,,"'" 114

7 . 7 A pp lying Flow UML " " " """" "" .. """.... 115
7 . 7 .1 Basic Flow Predicates " " " ... "" " " " 115
7.7.2
7.7.3
7.7.4
7.7.5

7.8
7.9

Propagation Po lic ies .. " """.............. 116
Transitive Flow Policies " "" " " .. " .. " " .. " .. " "" " 117
Finalizing Flows """""" ... " ... " .. " .. "" " .. ""....... 118
Detecting Unsafe Flows with Respect to Policies """"" .. "" .. " 119

The larger scope of Flow UML """"""""""""""""""""",,""""""""""""'" 122
Conclusions ... 125

C hap ler 8 .. """"'''''' 126
INTEGRATING THE ANALYSIS OF ACCESS AND FLOW CONTROL
POLl CI E S ""'''''' .. , 126

8.1 Running Examp Ie """" "" " " ,,"" 127
8.2 AuthUML and FlowUML Collaboration""" " " " """ .. """,, 129

8.2. I Co llaboration Process " """""""" " " "" .. "" ... " .. ,,",,. 130
8.2.2 The Collaboration Process in Detail " .. """"" .. "" 132

8.3 The Flexibility of AuthUML and FlowUML.. "" " "" " 138
8.4 Conclusion .. "" "."." " " ... 141

C hap Ie r 9 143

CON CL US ION """"""""""""""'"'' 143
9.1 Conclusion "" "" " "" .. " "",, ,,""""" 143
9.2 Future Work """ "",, ,, "" 145

BIB LI 0 G RAPHY .. "",,,,,,,,,,,, ,..... 146

www.manaraa.com

Vlli

APPENDICES ... 153
Publications ... 153

www.manaraa.com

;x

LIST OF TABLES

Table Page

Table 4.1. An Example of the SPC of the Authorize Payment Operation 35
Table 5.1. Access Control Table of The Running Example ... 64
Table 5.2. Access Control Table After Applying Propagation and Decision Policies 66
Table 5.4. Identified Operations ... 69
Table 5.5. Access Control Table for Operations ... 69
Table 6.1. Rules Defining Predicate ... 88
Table 6.2. Rules for Enforcing Propagation Policies on Subject Hierarchy 94
Table 6.3. Rules for Enforcing Inconsistency Resolution and Decision Policies 95
Table 7.1. FlowUML's Strata for Coarse-grain Policies .. 114
Table 7.2. FlowUML's Strata for Fine-grain Policies 115

www.manaraa.com

x

LIST OF FIGURES

Figure Page

Figure 3.1. Use Case Description ... 21
Figure 3.2: Use Case Diagram .. 21
Figure 3.3. An Example of Sequence Diagram ... 22
Figure 3.4. FAF System Architecture ... 25
Figure 3.5. Role-based Access Control Model ... 27
Figure 4.1. Use Cases for the Purchasing Process .. 31
Figurc 4.2. Sequencing of Purchasing Process Workflow .. 32
Figure 4.3. Security Policy Constraints' Relationship in the Core Package 34
Figure 4.4. SPC Interactions with Other Elements ... 37
Figure 4.6. RBAC Metamodel ... 44
Figure 4.7. Transaction Execution Tree ... 47
Figure 4.8. Metamodel for the Flexible Information Flow Control Model 48
Figure 4.9. Distributed Access Control Processor Architecture Scenario 50
Figure 5.1. The Use Case Diagram....... 55
Figure 5.2. The Role Hierarchy............ 55
Figure 5.3. Format of Access Control Sc hemJs 58
Figure 5.4. The Access Control Schema for the AlIlhorize Payment Use Case 59
Figure 5.5. The Access Control ModeL ... 60
Table 5.3. Access Control Table After Applying Propagation and Decision Policies 67
Figure 5.6. An ,\lgoTithm for Enforcing Integrity Constraint ofDSOD Policies 72
Figure 5.7. The Rctincd Use Case Diagram ... 75
Figure 6.1. AuthUML Architecture .. 80
Figure 7.2: The Sequence Diagram for Usc Casel ... 104
Figure 7.3: Sequence Diagram for Use Case 2 (fine grain) .. 105
Figure 8.1 Use Cases of the Purchasing Process ... 128
Figure 8.2 . Example of Sequence Diagram ... 128
Figure 8.4. Comprehensive AuthUML and FlowUML Collaboration 131
Figure 8.5. AuthUML and FlowUML Collaboration Predicates 132
Figure 8.6. The Comprehensive Seope of Applying AuthUML and FlowUML. 140

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Incorporating Access and Flow Control Policies in Requirements
Engineering

A dissertation submitted In p,H1lai fulfillment of the requirements for the degree of
Doctor of Philosophy at Gc,)r!!~ Mason University.

By

Khaled S. Alghathbar

B.S. King Saud University, Saudi Arabia, June 1998
M.S. George Mason University, Fairfax, VA, August 2001

Director: Dr. Duminda Wijesekera
Information and Software Engineering

Spring Semester 2004
George Mason University

Fairfax, VA

ii

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Incorporating Access and Flow Control Policies in Requirements
Engineering

A dissertation submitted In p,H1lai fulfillment of the requirements for the degree of
Doctor of Philosophy at Gc,)r!!~ Mason University.

By

Khaled S. Alghathbar

B.S. King Saud University, Saudi Arabia, June 1998
M.S. George Mason University, Fairfax, VA, August 2001

Director: Dr. Duminda Wijesekera
Information and Software Engineering

Spring Semester 2004
George Mason University

Fairfax, VA

ii

www.manaraa.com

ABSTRACT

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING

Khaled Alghathbar, Ph.D.

George Mason University, 2004

Dissertation Director: Dr. Duminda Wijesekera

Access and flow control policies have not been well IIllcgr"led into functional

specifications throughout the software development life cycle. Access and flow control

policies, and security in general, are generally considered to be non-functional

requirements that are difficult to express, analyze, and test. Accordingly, most security

requirements are considered after the analysis of the functional requirements. Ignoring

non-functional requirements or paying less attention to them during the early

development process results in low-quality, inconsistent software, dissatisfied

stakeholders, and extra time and cost to re-engineer. Therefore, integrating security with

other functional requirements as early as possible during the software life cycle improves

the security of the software and reduces the cost of maintenance.

The main focus of this dissertation is to incorporate both access and flow control policies

with other functional requirements during the requirements specification and analysis

www.manaraa.com

phases of the software development life cycle. I have developed a unified representation

language and formal verification frameworks for both access and flow control policies.

As the Unified Modeling Language (UML) is the de facto standard modeling language, I

extended it with the necessary elements to represent access and flow control policies.

This extension allows software developers to model access and flow control policies in a

unified way. The advantage of extending UML to incorporate access and flow control

policies is easing its adoption by software developers. This extension addresses what

others have not addressed, such as the representation and modeling of dynamic access

and flow control policies, negative authorizations, and inherited authorizations.

In I,,,~l' ,,,ftware systems, there are a large number of access and flow control policies to

enforce; thus, inconsistent, incomplete, and conflicting sets of policies may be specified.

Therefore, there is need for a formal and automated language and tools to detect

problems due to improper policies. For the analysis of access control policies, I

developed AuthUML, a framework, based on logic programming, that analyzes access

control requirements in the requirements phase to ensure that they are consistent,

complete, and conflict-free. The framework is a customized version of Flexible Access

Framework (F AF) of Jajodia et al. and it is suitable for UML-bascd requirements

engineering. It analyzes access control policies at two different levels: Use Cases and

conceptual operations.

For the analysis of information flow control policies, I developed FlowUML, a logic

based system that verifies the proper enforcement of information flow control policies at

www.manaraa.com

the requirements specification phase of UML-based designs. FlowUML uses logic

programming to verity the compliance of information flow control requirements with

information flow polices. FlowUML policies can be written at a coarse-grain level or in a

finer-grain level; these two levels provide a comprehensive and wide application of

policies.

Finally, because of the overlap of access and flow control policies, I integrated the

analysis of both policies into one framework that reduces redundant process, provides

more useful analysis information, and improves overall analysis in general.

www.manaraa.com

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REOUIREMENTS ENGINEERING

Committee:

by

Khaled S. Alghathbar
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

in Partial Fulfillment of
The Requirements for the I kgrce

of

7 ,

Doctor of Philosophy
Information Technology

Dr. Duminda Wijesekera, Dissertation Director

Dr. Edgar Sibley, Committee Chairman

Dr. David Schum

Dr. Francesco Parisi-Presicce

Dr. Stephen G. Nash, Associate Dean for
raduate Studies and Research

Dr. Lloyd J. Gnffiths. Dean. School of
Information Technology and Lngmeering

Date: __________ _ Spnn;; Semester 2004
(Jeorg~ \lason University
Falrtax, VA

www.manaraa.com

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REOUIREMENTS ENGINEERING

Committee:

by

Khaled S. Aighathbar
A Dissertation

Submitted to the
Graduate Faculty

of
George Mason University

in Partial Fulfillment of
The Requirements for the Degree

of
Doctor of Philosophy

Information Technoi();!:

Dr. Duminda Wijesekera, Dissertation Director

Dr. Edgar Sibley, Committee Chairman

Dr. David Schum

Dr. Francesco Parisi-Presicce

Dr. Stephen G. Nash, Associate Dean for
Graduate Studies and Research

Dr. Lloyd J. Griffiths, Dean, School of
Information Technology and Engineering

Date: __________ ~ ~pnng '\emester 2004
Geurge Mason University
FalrtJx. VA

www.manaraa.com

DEDICATION

To m!!JJarentJ, m!f w!fe ami m!! Jonfir tlieir constaHf fove,yatimce, sacrifices, sUJ'yort ant!
encoura!fement tliat madi: tlii.f !freat accomyfislimt'llfyosJi/Jfe.

iii

www.manaraa.com

ACKNOWLEDGEMENTS

!1'ropfiet 'Moliammed (PCJ, c ifJe Vpon Jfim) saU["'Wfioever does not give tlianliJ to tlie peopfe does not
give tfianliJ to A/("r. "

First and foremost, I would like to express my deepest gratitude to Allah for his
inspiration and guidance to achieve this work.

I would like to express my sincere gratitude and appreciation to my dissertation director
Professor Duminda Wijesekcra, for his unlimited support and advising. He enlightened
broadways to thorough thinking and new bodies of knowledge.

Also, I convey my appreciation to Professor Edger Sibley to be the chairman of my
doctoral committee and for his invaluable guidance and encouragement. The thanks
extend to the members of my dissertation committee, Professor David Schum and
Professor Francesco Parisi-Presicce, for all their invaluable comments and suggestions.

My warmest appreciations for my wife and son here in the United States and to my
parents, brothers, sisters, nephews, nieces and friends back in Saudi Arabia for all their
prayers, patients, support and love that comforted me during my studies abroad.

Thanks to all my Saudi colleagues in GMU for their support and encouragement through
out my master and doctorate degrees.

I acknowledge the financial support of Kind Saud University of Saudi Arabia during my
higher education.

- To everyone who helped me directly or indirectly -

www.manaraa.com

v

TABLE OF CONTENTS

Page

ABS TRA CT••••...•...................... xi

Chapter 1•••...•.............................••••............................••••••...................•••... 1
INTRODUCTION•..•.•................................••.•.......................•.••••........... 1

1.1 Problem Statement .. I
1.2 Thesis Statement ... I
1.3 Significance of Contributions ... 3
1.4 Summary of Contributions .. 5
1.5 Organization of the Dissertation ... 6

Chapter 2 ... 8
LITERATURE REVIE\V .. 8

2.1 Extending the UML Metamodel and Use Case Model.. 9
2.2 Analyzing Access Control Requirements ... 13
2.3 Analyzing Flow Control Requirements .. 15
2.4 Summary ... 16

Chapter 3 ... 17
BACKGROUND ... 17

3.1 Unified Modeling Language ... 17
3.1.1 Overview of the UML. .. 18
3.1.2 Use Case .. 19
3.1.3 Sequence Diagram .. 22
3.1.4 Object Constraint Language ... 23

3.2 Flexible Authorization Framework ... 24
3.3 Access control policies ... 25

3.3.1 Discretionary Access Control ... 26
3.3.2 Mandatory Access Control ... 26
3.3.3 Role-based Access Control ... 27

Chapter 4 ... 29
EXTENDING THE UML METAMODEL .. 29

4.1 Running Example .. 30
4.2 Extension to the Metamodcl of UML ... 32

4.2. I Security Policy Constraints ... 33

www.manaraa.com

VI

4.2.2 History Logs .. 36
4.2.3 Business Tasks .. 36
4.2.4 Conflicts .. 37
4.2.5 Interactions between SPCs, History Logs and Business Tasks 37
4.2.6 Enforcing Access Control Constraints .. 38

4.3 Applying the New Extension to the Running Example 39
4.4 Case Study of Existing Security Models .. 43

4.4.1 Role-based Access Control Metamodel.. .. 43
4.4.2 Workflow Policies .. 45
4.4.3 Representing Distributed Authorization ModeL 48

4.5 Conclusions ... 51

Chapter 5 ... 52
EXTENDING THE USE CASE MODEL .. 52

5.1 Introduction ... 52
5.2 Running Example .. 56
5.3 Formal Steps for Specifying Access Control Policies 57

5.3.1 Writing Access Control Schema ... 57
5.3.2 Developing an Access Control Table and Applying Propagation, Conflict
Resolution and Decision Policies on All Use Cases ... 63
5.3.3 PropdgJllng Authorizations to Operations .. 67
5.3.4 Rc,oh Ing Operations Authorization Conflicts ... 69
5.3.5 Drawmg The Refined Usc Case Diagram ... 73

5.4 Conclusion .. 76

Chapter 6 ... 77
AUTHUML .. 77

6.1 AuthUML Process .. 78
6.2 AuthUML Syntax and Semantics ... 82

6.2.1 Individuals and Terms of AuthUML .. 82
6.2.2 Predicates of AuthUML .. 83
6.2.3 Rule of AuthUML ... 87
6.2.4 AuthUML Semantics .. 88

6.3 Phase I: Analyzing Information in Requirements Documents 89
6.3.1 Representing Authorizations ... 89
6.3.2 Ensuring Consistent And Conflict-Free Access Control Specifications ... 91

6.4 Phase II: Applying Policies to Use Cases ... 93
6.4.1 Propagation Policies .. 93
6.4.2 Inconsistency Resolution Policies ... 93
6.4.3 Decision Policies ... 95
6.4.4 Alerting the Requirements Engineer of Changes to Use Case Accesses .. 96

6.5 Phase III Applying Policies to Operations ... 96
6.5.1 ProPJ1,'.dI In!; Permissions to Operations .. 97
6.5.2 Incoml,kllcy Resolution for Operations .. 97

www.manaraa.com

6.5.3
6.5.4

6.6

vii

Completing Accesses for Operations ... 98
Alerting the Requirements Engineer ofIrrcconcilable Conflicts 98

Cone lusions... 99

C h a pter 7 ... 101
FLO WUML ... 101

7.1 In troduction... I 0 I
7.2 Flow Specification in the UML """""""""""""""""""""""",,"""""""""" 103
7.3 The Running Example" " .. "" " "" " "" .. " .. 1 04
7.4 Notations and Assumptions """""""" .. "" " ,, """"""""" 106

7.4.1 Sources, Sinks and Object Typcs "" """" " " 106
7.4.2 Method Names and Information Flows " """"." " ,,. 106
7.4.3 Complex Message Constructs in the UML """" 106
7.4.4 Attribute Dependencies Across Objects """"""""""",,"""""""""""'" 107

7.5 V erificati on Process"" """" .. "" ".... ",,""""""""" .. ,,"'" 108
7.5.1 Coarse· grain Policy Analysis""" "".. " ,," "" " 109
7.5.2 Fine·grain Policy Analysis """"" .""" .. " """" .. "" 110

7.6 Syntax and Semantics """" .. " "",,................... . " "" "" .. ,,'" 110
7 .6.1 Semantics of FlowUML " " "" """" .. "." "" " .. ,,"'" 114

7 . 7 A pp lying Flow UML " " " """" "" .. """.... 115
7 . 7 .1 Basic Flow Predicates " " " ... "" " " " 115
7.7.2
7.7.3
7.7.4
7.7.5

7.8
7.9

Propagation Po lic ies .. " """.............. 116
Transitive Flow Policies " "" " " .. " .. " " .. " .. " "" " 117
Finalizing Flows """""" ... " ... " .. " .. "" " .. ""....... 118
Detecting Unsafe Flows with Respect to Policies """"" .. "" .. " 119

The larger scope of Flow UML """"""""""""""""""""",,""""""""""""'" 122
Conclusions ... 125

C hap ler 8 .. """"'''''' 126
INTEGRATING THE ANALYSIS OF ACCESS AND FLOW CONTROL
POLl CI E S ""'''''' .. , 126

8.1 Running Examp Ie """" "" " " ,,"" 127
8.2 AuthUML and FlowUML Collaboration""" " " " """ .. """,, 129

8.2. I Co llaboration Process " """""""" " " "" .. "" ... " .. ,,",,. 130
8.2.2 The Collaboration Process in Detail " .. """"" .. "" 132

8.3 The Flexibility of AuthUML and FlowUML.. "" " "" " 138
8.4 Conclusion .. "" "."." " " ... 141

C hap Ie r 9 143

CON CL US ION """"""""""""""'"'' 143
9.1 Conclusion "" "" " "" .. " "",, ,,""""" 143
9.2 Future Work """ "",, ,, "" 145

BIB LI 0 G RAPHY .. "",,,,,,,,,,,, ,..... 146

www.manaraa.com

Vlli

APPENDICES ... 153
Publications ... 153

www.manaraa.com

;x

LIST OF TABLES

Table Page

Table 4.1. An Example of the SPC of the Authorize Payment Operation 35
Table 5.1. Access Control Table of The Running Example ... 64
Table 5.2. Access Control Table After Applying Propagation and Decision Policies 66
Table 5.4. Identified Operations ... 69
Table 5.5. Access Control Table for Operations ... 69
Table 6.1. Rules Defining Predicate ... 88
Table 6.2. Rules for Enforcing Propagation Policies on Subject Hierarchy 94
Table 6.3. Rules for Enforcing Inconsistency Resolution and Decision Policies 95
Table 7.1. FlowUML's Strata for Coarse-grain Policies .. 114
Table 7.2. FlowUML's Strata for Fine-grain Policies 115

www.manaraa.com

x

LIST OF FIGURES

Figure Page

Figure 3.1. Use Case Description ... 21
Figure 3.2: Use Case Diagram .. 21
Figure 3.3. An Example of Sequence Diagram ... 22
Figure 3.4. FAF System Architecture ... 25
Figure 3.5. Role-based Access Control Model ... 27
Figure 4.1. Use Cases for the Purchasing Process .. 31
Figurc 4.2. Sequencing of Purchasing Process Workflow .. 32
Figure 4.3. Security Policy Constraints' Relationship in the Core Package 34
Figure 4.4. SPC Interactions with Other Elements ... 37
Figure 4.6. RBAC Metamodel ... 44
Figure 4.7. Transaction Execution Tree ... 47
Figure 4.8. Metamodel for the Flexible Information Flow Control Model 48
Figure 4.9. Distributed Access Control Processor Architecture Scenario 50
Figure 5.1. The Use Case Diagram....... 55
Figure 5.2. The Role Hierarchy............ 55
Figure 5.3. Format of Access Control Sc hemJs 58
Figure 5.4. The Access Control Schema for the AlIlhorize Payment Use Case 59
Figure 5.5. The Access Control ModeL ... 60
Table 5.3. Access Control Table After Applying Propagation and Decision Policies 67
Figure 5.6. An ,\lgoTithm for Enforcing Integrity Constraint ofDSOD Policies 72
Figure 5.7. The Rctincd Use Case Diagram ... 75
Figure 6.1. AuthUML Architecture .. 80
Figure 7.2: The Sequence Diagram for Usc Casel ... 104
Figure 7.3: Sequence Diagram for Use Case 2 (fine grain) .. 105
Figure 8.1 Use Cases of the Purchasing Process ... 128
Figure 8.2 . Example of Sequence Diagram ... 128
Figure 8.4. Comprehensive AuthUML and FlowUML Collaboration 131
Figure 8.5. AuthUML and FlowUML Collaboration Predicates 132
Figure 8.6. The Comprehensive Seope of Applying AuthUML and FlowUML. 140

www.manaraa.com

Chapter 1

INTRODUCTION

1.1 Problem Statement

Today, most security requirements, such as access and flow control policies, are

considered only after the completion of functional requirements because security

requirements are considered non-functional requirements, which are difficult to express,

to analyze, and to test, and because languages used to specify access and flow control

policies (such as FAF [JSSSOl], PERMTS [C002], Author-X [BBC+OO] and POL

[LBN99]) are separate from the languages used to model functional requirements (such

as UML) during the software development life cycle. Consequently, security

considerations may not be properly engineered during the software development life

cycle, and less secure systems may result.

1.2 Thesis Statement

Oevanbu and Stubblebine [OSOO] challenged the academic community to adopt and

extend standard modeling languages such as UML to include security-related features. I

accepted this challenge by showing that:

www.manaraa.com

2

• It is possible to incorporate access and flow control policies with other functional

requirements during the early phases of the software development life cycle by

extending the Unified Modeling Language (UML) to include security features as

first class citizens.

• It is possible to develop tools that help software analysts and designers to verifY

the compliance of the access and flow control requirements with with policy

before proceeding to other phases of the software development process.

I substantiated my claim by:

I. Extending the metamodel of UML to incorporate aCCeSS and flow control

policies in the design.

2. Enhancing and extending the Use Case model by providing a unified

specification of access and flow control policies using object constraint

language (OCL).

3. Designing a formal framework to detect inconsistency, incompleteness, and

application-definable conflict among access control policies.

4. Designing a formal framework that verifies the compliance of information

flow requirements with information flow control policies.

5. Integrating both frameworks to analyze both access and flow control policies

at the same time.

www.manaraa.com

3

1.3 Significance of Contributions

Access and flow control policies in software security have not been well integrated with

functional specifications during the requirements engineering and modeling phases of the

software development life cycle. Security is considered to be a non-functional

requirement (NFR) [CNY+OOj. Such requirements are difficult to express, analyze, and

test; therefore, they are usually evaluated subjectively. Because NFRs tend to be

properties of a system as a whole [CNY +00, NEOOj" most security requirements are

considered after the analysis of the functional requirements [DSOOj. The consequences of

ignoring NFR are low-quality and inconsistent software, unsatisfied stakeholders, and

more time and cost in re-engineering [CNY+OOj. Therefore, Inlcgrdllng security into the

software life cycle throughout all its phases adds value to the outcome of the process.

It is important to specify access control policies precisely and in sufficient detail, because

ambiguities in requirements specifications can result in erroneous software [GW89j. In

addition, careful consideration of requirements - including NFRs - will result in reducing

project cost and time, because errors that arc not detected early can propagate into the

other phases of the software development life cycle, where the cost of detection and

removal is high [DSOOj [BoeSI]. By analyzing large projects in IBM, GTE, and TRW,

Boehm [Boe8lj computed the cost of removing errors in general made during the various

phases of the development life cycle, as shown in table I.

www.manaraa.com

Table 1: Relative Cost to Correct an Error

Phase where the error is tOllnd

Requirements

Design

Code

Development test

Acceptance test

Operation

Cost ratio

3-6

to

15-35

40-75

30-1000

4

In UML-based software design methodologies, requirements are specified using Use

Cases at the beginning of the life cycle. Use Cases specify actors and their intended usage

of the envisioned system. Nevertheless, a Use Case is written in natural language, which

lacks the precision and specification of security [DSOO]. Therefore, there is a need to

provide a unified language for representing security features, such as access and flow

control policies [DSOO, CNY +00], in the early phases of the software development life

cycle. This language must allow software developers to model access control policies in a

unified way and it must be compatible with other requirements modeling languages.

In addition, there is a need to verify the compliances of security requirements with the

security policies before proceeding to other phases of the software development life cycle

[NEOO, Pfl98, RusO I]. I used Logic as the underlying language because it is potentially

amenable to automated reasoning [NEOO, RusOI].

My dissertation partially fulfills Devanbu and Stubblebine's challenge [DSOO], because

totally satisfying their requirement has to consider all aspects of security in all phases of

the software development life cycles. My contributions meet the challenge in the

www.manaraa.com

5

requirements, analysis and design phases only by specifying and verifying access and

flow control policies there.

1,4 Summary of Contributions

My dissertation introduced several contributions that assist software developers to specify

and analyze access and flow control policies during the first three phases of the software

development process, requirement specification, analysis, and design phases. The

following summarize my contributions:

6. I extended the UML Metamodel in a way that allows systems designers to model

dynamic and static access control policies as well as flow control policies in a

unified way. Thc extension provides a better way to integrate and impose

authorization policies on commercial off-the-shelf (COTS) and mobile code. I

showed how this extension allows non-security experts to represent access control

models, such as Role-Based Access Control (RBAC) and workflow policies, in an

uncomplicated manner.

7. I extended the Use Case model to specify access control policies precisely and

unambiguously with sufficient details in the UML's Use Case. I added to Use

Cases by using something analogous to operation schemas [SSOO], which I called

access control policy schemas. The extension employs the Object Constraint

Language (OCL) [OCLOI], which is more formal than the existing Use Case

language (natural language) for specifying access and flow control policies.

www.manaraa.com

8. I developed a framework called Auth UML that formally verifies the compliance

of access control requirements with the access control policies during the

requirement specification and analysis phases using Prolog style stratified logic

programmmg.

9. I developed a framework called FlowUML to verify the proper enforcement of

information flow control policies on the requirements.

10. I incorporated the analysis of both access and flow control requirements by

integrating both AutbUML and FlowUML. The incorporation of both frameworks

improves the analysis and detection of improper access and flow control

requirement.

Based on my work in this dissertation I published several papers.

1.5 Organization of the Dissertation

6

Chapter 2 summarizes the literature that is related to my work, it also analyzes and

compares the work with what I presented in this dissertation. Chapter 3 summarizes

background works that are used as bases for my extensions, such as the UML, F AF and

Operation Schemas. Chapter 4 presents the extension of the UML Metamodcl to design

access and flow control policies, and it shows the application of the extension on

different existing access control models. Chapter 5 presents the extension of the Use Case

to formally specifY access and flow control requirements, and it shows the extension of

the Use Case uldgrdlll and how to analyze the access control requirements visually.

Chapter 6 introduces AuthUML, a framework to verify and detect improper access

www.manaraa.com

7

control requirements. Chapter 7 presents the FlowUML, a framework that analyzes

information flow control requirement and detects violation of information flow control

policies. Chapter 8 incorporates the analysis of both AuthUML and FlowUML and

produces a coherent framework to verify both access and flow control requirements.

Finally, summary of my contributions and discussion of future research are presented in

chapter 9.

www.manaraa.com

Chapter 2

LITERATURE REVIEW

Several new papers have been published in this area; those works concentrate on different

aspects of security features and software development phases. However, there are some

drawbacks in those works that need to be improved; further, some additional issues need

to be addressed.

There are several aspects of security that need to be integrated into the software

development proeess such as access control policies, flow control policies,

authentication, integrity, and encryptions. Likewise, there are different phases of software

development such as requirements specification, analysis, design, implementation, and

testing, that require security to be integrated with them for better secure software

systems.

In this dissertation, I have focused on five aspects of integrating access and flow control

policies during requirement engineering. First, I extended the UML metamodel to allow

the proper specification of access and flow control policies. Second, I extended the Use

Case model to formally specify access and flow control policies. Third, I developed a

framework to verify the access control requirements. Fourth, I developed a framework to

verify the flow control requirements. Both frameworks detect improper access and flow

8

www.manaraa.com

9

control requirements as early as possible during the software proccss. The following

scctions summarize the literatures related to cach aspect.

2.1 Extending the UML Metamodel and Use Case Model

Lodderstedt el al. [LBD02] proposed a methodology to model access control policies and

integrate them into a model-driven software development process. The work was based

on RBAC as a security model. My work is differs from [LBD02] by concentrating on

specifying dynamic access control policies (e.g. dynamic separation of duty) and

workflow as well as static access control policies. Furthermore, I focused on dynamic

design modeling while Lodderstedt's focus was on static dC>lgn model. Also, my

prospective vicw of enforcing constraints is from the flow view not trom the static view.

There are several issues missing from the work of Lodderstcdt el al. First, history-related

constraints cannot be modeled with Lodderstedt' s method. Second, the metamodeI is not

flexible enough to model all access control policies, because it is based on RBAC only.

Third, the metamodel cannot restrict people in senior roles from performing certain junior

operations and it cannot specify conflict among users, operations, or roles.

Fernandez-Medina e/ al. [FPSOl] introduced a language called Object Security constraint

Language (OSCL). OSCL extends the Object Constraint Language (OCL) [WK99] to

specify security constraints to represent multi-level security systems. Also, Fernandez

Medina el al. in [FMM+02] proposed an extension to the Use Case and Class models of

the UML. The extensions of Use Case diagram which they introduced were stereotypes:

«safe-UC» and «accredited -actor» as an indication of a secure Use Case and

www.manaraa.com

10

authorized actor. Their work is focused on database security and shows how to model

mult!le\el security on the static diagram such as Class diagram by introducing tagged

values to classes, attributes, operations, and association ends where those tagged values

indicate the security level of the element. However, this extension did not represent

dynamic authorization and workflow policies. Also, the extension was limited to

multilevel security model. Finally, the extension did not address the type of authorization

that is granted to the accredited actor, nor the integrity constraints associated with such

authorizations.

Brose el al. [BKL02] extended the UML to support the automatll generation of the

access control policies to configure a CORBA-based infrastructure for View-based access

control. It stated permissions and prohibitions of accessing system's objects (read, write,

exccutc ... etc) explicitly by writing notes that are attached to actors in the Use Case

diagrams. However, their work was based on static specification of access policies but it

could not model dynamic access control policies such as Dynamic Separation of Duty nor

it could enforce some flow requirement such as the order of operations in a specific

workflow systems. Although, that work covered most parts of the software development

life cycle, it did not integrate access control policies in the interaction diagrams such as

the Sequence diagram, and that what I presented in this dissertation. In addition, the

specification language of that work was natural language which is imprecise. Therefore, I

used the OCL to specify the constraints more precisely. Finally, that work considered role

hierarchies, but no propdgJtlon or conflict resolution policies have been addressed for the

inherited authorizations.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

147

BIBLIOGRAPHY

[ABW88] K. Apt, H. Blair, A. Walker. Towards a theory of declarative knowledge. In
J Minker, editor, Foundations of deductive databases, pages 89-148.
Morgan Kaufmann, San Mateo, 1988.

[ASOO] G.-J. Ahn and R. Sandhu, Role-based Authorization Constraints
Specification. ACM Transactions on Information and System Security, pages
207-226, Vol. 3, No.4, November 2000.

[ASOI] G.-I. Ahn, M. Shin. Role-Based Authorization Constraints Specification
Using Object Constraint Language. In the proceedings of the Tenth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 20 - 22, 2001 Massachusetts.

[A W03] K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic
Authorization Policics. In proc. of the International Conference on
Computer Science, Software Engineering, Information Technology, e-
Business, and Applications (CSITeA '03), Rio de Janeiro, Brazil. June 5-7,
2003.

[AgW03] K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic
Authorization Policies. In proc. of the International Conference on
Computer Science, Software Engineering, Information Technology, e
Business, and Applications (CSITeA'03), Rio de Janeiro, Brazil. June 5-7,
2003.

[BA99] E. Bertino and V. Atluri. The specification and enforcement of authorization
constraints in workflow managemcnt. A CM transactions on Information
Systems Security, February 1999.

[BBC+OO] E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti. Author-x: A
javabased system for XML data protection. In IFIP Workshop on Database
Security, pages 15-26, 2000.

[BCVSOO] P. Bonatti, S. De Capitani di Vimercati, P. Samarati. A Modular Approach
to Composing Access Control Policies. Proc. of the Seventh ACM

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

147

BIBLIOGRAPHY

[ABW88] K. Apt, H. Blair, A. Walker. Towards a theory of declarative knowledge. In
J Minker, editor, Foundations of deductive databases, pages 89-148.
Morgan Kaufmann, San Mateo, 1988.

[ASOO] G.-J. Ahn and R. Sandhu, Role-based Authorization Constraints
Specification. ACM Transactions on Information and System Security, pages
207-226, Vol. 3, No.4, November 2000.

[ASOI] G.-I. Ahn, M. Shin. Role-Based Authorization Constraints Specification
Using Object Constraint Language. In the proceedings of the Tenth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 20 - 22, 2001 Massachusetts.

[A W03] K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic
Authorization Policics. In proc. of the International Conference on
Computer Science, Software Engineering, Information Technology, e-
Business, and Applications (CSITeA '03), Rio de Janeiro, Brazil. June 5-7,
2003.

[AgW03] K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic
Authorization Policies. In proc. of the International Conference on
Computer Science, Software Engineering, Information Technology, e
Business, and Applications (CSITeA'03), Rio de Janeiro, Brazil. June 5-7,
2003.

[BA99] E. Bertino and V. Atluri. The specification and enforcement of authorization
constraints in workflow managemcnt. A CM transactions on Information
Systems Security, February 1999.

[BBC+OO] E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti. Author-x: A
javabased system for XML data protection. In IFIP Workshop on Database
Security, pages 15-26, 2000.

[BCVSOO] P. Bonatti, S. De Capitani di Vimercati, P. Samarati. A Modular Approach
to Composing Access Control Policies. Proc. of the Seventh ACM

www.manaraa.com

[BKL02]

[BL75]

[Boe81]

[BRJ99]

[BroOO]

148

Conference on Computer and Communications Security, Athens, Greece,
November 1-4, 2000.

G. Brose, M. Koch, K.-P. Lohr. Integrating Access Control Design into the
Software Development Process. In the Proceedings of the SII Iii numnial
world conference on the Integrated Design and Process Techl/o/II'?,l (IDPT),
Pasadena, CA. June 2002.

D, Bell and L. LaPadula. Secure computer system: United exposition and
Multics interpretation. Technical Report, ESD-TR-75-306, MITRE Corp.
MTR-2997. Bedford, MA, 1975,

B. Boehm. Software engineering economics. Englewood Cliffs, NJ: Prentice
Hall. 1981.

G. Booch, J, Rumbaugh, and I. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, Reading, MA, 1999.

G. Brose. A typcd access control model for COREA. In F. Cuppens, Y.
Dcswarte, D. Gollmann, and M. Weidner, editors, Proc. European
Symposium on Research in Computer Security (ESORlCS), LNCS 1895,
pages 88-105. Springer, 2000.

[CNY+OO] L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers (2000).

[C002] D, Chadwick, A. Otenko. The PERMI'> X 509 Role Based Privilege
Management Infrastructure. In the Proceedll1g> of the 7th Acm Symposium
On Access Control Models And Technolog/t" rS4CMAT 2002). Montrerey,
California USA. 3-4 June 2002.

[CW87] D. D. Clark, D. R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. In the proc. IEEE Symposium on Security and
Privacy. 1987.

[CWJ03] S. Chen, D. Wijesekera, S. Jajodia. FlexFlow: A Flexible Flow Control
Policy Specification Framework. In proceedings of the 17th Annual IFIP
we 11.3 Working Conference on Database and Applications Security. Estes
Park, Colorado. August 2003.

[DM89] J. Dobson, J. McDermid: A Framework for Expressing Models of Security
Policy. In the proc. IEEE Symposium on Security and Privacy. 1989.

www.manaraa.com

149

[DSOO] P. T. Devanbu and S. Stubblebine. Software engineering for seeurity:A
roadmap. In A. Finkelstein, editor, The Future of Software Engineering.
ACM Press, 2000.

[FH97] E. B. Fernandez and J. C. Hawkins, Determining role rights from use cases,
In the Procs. 2nd. ACM Workshop on Role-Based Access Control,
November 1997,121-125.

[FHG97] D. Firesmith, B. Henderson-Sellers, I. Graham, OPEN Modeling Language
(OML) Reference Manual. SIGS Books. 1997.

[FMM+02] E. Fernandez-Medina, A. Martinez, C Medma, And M. Piattini. Integrating
Multilevel Security in the Database Dc"gn Process. In the Proceedings of
the sixth biennial world conference on the Integrated Design and Process
Technology (IDPT), Pasadena, CA. June 2002.

[FPSOI] E. Fernadez-Medina, M.G. Piattini, M.A Serrano. Specification of Security
Constraints in UML. In the 35th International Carnahan Conference on
Security Technology (ICCST), London, UK, October 200 I.

[FS99] M. Fowler, K. Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language (2nd Edition), Addison-Wesley, 1999.

[FSBJ97] E. Ferrari, P. Samarati, E. Bertino, S. Jajodia. Providing Flexibility in
Information Flow Control for Object-Oriented Systems. Proc. IEEE Symp.
on Research in Security and Privacy, Oakland, Calif., May 1997, pp. 130-
140

[GH91] D. Gabbay and A. Hunter. Making Inconsistency Respectable: A Logical
Framework for Inconsistency in Reasoning, Phase I - A Position Chapter,
Proceedings of Fundamentals of Artificial Intelligence Research '91, 19-32,
Springer-Verlag.

[GH92] D. Gabbay and A. Hunter. Making Inconsistency Respectable: A Logical
Framework for Inconsistency in Reasoning, Phasc2. In Symbolic and
Quantitative Approaches to Reasoning and Uncertainty, 129-136, LNCS,
Springer-Verlag, 1992.

[GL88] M. Gelfond, V. Lifschitz. The stable model semantics for logic
programming. In Prnct'edtngs, 5th International Conference and Symposium
on Logic Progranlllllll!! Seattle, Wash. pp. 1070-1080. 1988

[GomOO] H. Gomaa. Designing Concurrent, Distributed, and Real-Time Applications
with UML. Addison Wesley, 2000

www.manaraa.com

150

[GW89] D. Gause, G. Weinberg. Exploring Requirements: Quality Before Design,
Dorset House, New York, NY (1989).

[JCJ092] I. Jacobson, M. (hnsle"on, P. Jonson, and G. Overgaad. Object-Oriented
Software EngineelflH; A Use Case Driven Approval. Addison-Wesley,
1992.

[JSSSO I] S. Jajodia, P. Samarati, M. Sapino, V. S. Subrahmanian, Flexible support for
multiple access control policies, A CM Trans. on Database Systems, Vol. 26,
No.2, June 200 I, pages 214-260.

[JurOI] J. Jurjens. Towards development of secure systems using UMLsec. In H.
Hussmann, editor, In the Proceeding' 0/ 4th International Conference of
Fundamental Approaches to Software LIH;lIIcering, LNCS, pages 187-200.
Springer, 2001.

[KPOO] M. Koch, F. Parisi-Presicce, Access Control Policy Specification in UML,
In Proc. of Critical Systems Development with UML. satellite workshop of
UML 2002, TUM-I0208, pages 63-78, 2002.

[KP03] M.Koch, F.Parisi-Presicce, Formal Access Control Analysis in the Software
Development Process, In Proc. ACM Workshop on Formal Methods in
Security Engineering (FMSE2003), Washington D.C., Oct 2003, pp. 67-76.

[Kra02] R. Kraft. Designlllg d Distributed Authorization Processor for Network
Services on the Web Proc. ACM Workshop on XML Security. Fairfax,
Virginia 2002.

[LBD02] T. Lodderstedt, D. Basin, J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In the proceedings of the 5th
International Conference on the Unified Modeling Language. Dresden,
Germany. Pages 426-441. Springer, October 2002.

[LBN99] J. Lobo, R. Bhatia and S. Naqvi. A Policy Description Language. In Proc.
AAAI. July, 1999.

[Mye99] A. Myers. JFlow: Practical mostly-static information flow control. 111 Proc
26th ACM Symp. on Principles of Programming Languages (POPL). pdg'"
228--241, San Antonio, TX, January 1999.

[NEOO] B. Nuseibeh and S. Easterbrook. Requirements engineering: A roadmap. In
A. Finkelstein, editor, The Future of Software Engineering. ACM Press,
2000.

www.manaraa.com

[NEOl]

[OCLOI]

151

B. Nuseibeh, S. Easterbrook and A. Russo, Making Respectable in Software
Development, Journal of Systems and Software, 56(11), November 2001,
Elsevier Science Publishers.

Object Management Group. OMG Object Constraint Language Spec
ification, Version 1.5,2001. http://www.omg.orglcgi-binldoc?formaII03-03-
01

[OMGOl] Object Management Group. OMG Unified Modeling Language
Specification, Version 1.4, 2001.
hltp:llwww.omg.orgltechnologyldocumentslformalluml.htm.

[Pfl98] S. Pfleeger. Software Engineering:Theory and Practice. Prentice-Hall.
1998.

[RLK+03] 1. Ray, N. Li, D. Kim and R. France, Using Parameterized the UML to
Specify and Compose Access Control Models, Proceedings of the Sixth
IFIP WG 11.5 Conference on Integrity and Control in Information Systems,
Lausanne, Switzerland, November 2003.

[Ros03] Rational Rose. hltp:llwww.rational.com.2003.

[RUP04] Rational Software Corporation. Rational Unified Process.
hltp:llwww.rational.comlproductslruplindexjsp. 2004

[RusO I] J. Rushby. Security Requirements Specifications: How and What? In the
proceedings of Symposium on Requirements Engineering for Information
Security (SREIS). Indianapolis, IN. March, 2001.

[SAOO] M. Shin, G.-J. Ahn. The UML-based Representation of Role-based Access
Control. In Proceedings of the 5th IEEE International Workshop on
Enterprise Security (WETICE 2000), NIST, MD, June 14-16,2000.

[SBC+97] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information flow
control in object-oriented systems. IEEE Transactions on Knowledge and
Data Engineering, 9(4):524--538, July-Aug. 1997.

[SCFY96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. IEEE Computer, 29(2):3"7, 1996.

[Sen02] S. Sendall. Specifying Reactive System Behavior, Ph.D. thesis, Swiss Fed-
eral Institute of Technology - Lausanne (EPFL), May 2002

www.manaraa.com

[SSOO]

[SS94]

[SZ97]

[WK99]

[WJ02]

152

S. Sendall, A. Strohmeier: From Usc Cases to System Operation Spec
ifications. In the conference of the Unified Modeling Language conference,
2000.

R. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE
Comm., Vol. 32, Num. 9, September 1994.

R. Simon, M. Zurko. Separation of duty in role-based environments. In the
Proceedings of the lath Computer Security Foundations Workshop,
Rockport, MA, June, 1997.

J. Warmer, a. Kleppe. The Object Constraint L<llIglla"c Precise Modeling
with UML. Addison Wesley, 1999.

D. Wijesekera, S. Jajodia, Policy Algebras for Access Control -The
predicate Case, Proc. 8th ACM Conference on Computer and
Communications Security, Washington, DC, November 17-22, 2002, pages
171-180.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

APPENDICES

Publications

The contributions of this dissertation have been published! in submission in several

international referrcd conferences and journals. The following lists those publications:

1. K. Alghathbar, D. Wijesekera. Analyzing Flow Control Policies in Requirements

Engincering. In the Proc. of the IEEE 5th International Workshop on Policies for

Distributed Systems and Networks. Yorktown Heights, New York. June 7-9,

2004.

2. K. Alghathbar, D. Wijesekera. Incorporating Access Control Policies in

Requirements Engineering. Journal of Computcr and Information Science (HCIS).

vol. 5, no. 3, Mar. 2004.

3. K. Alghathbar, D. Wijesekera. authUML: A Three-phased framework to analyze

access control specifications in Use Cases. In proc. of the Workshop on Formal

Methods in Security Engineering (FMSE), Washington, DC. October 2003. ACM

Press.

4. K. Alghathbar, D. Wijesckcra. Consistent and Complete Access Control Policies in

Use Cases. In proc. of the 6th International Conference on the Unified Modeling

Language (UML'03), San Francisco, CA. October 2003.

153

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

APPENDICES

Publications

The contributions of this dissertation have been published! in submission in several

international referrcd conferences and journals. The following lists those publications:

1. K. Alghathbar, D. Wijesekera. Analyzing Flow Control Policies in Requirements

Engincering. In the Proc. of the IEEE 5th International Workshop on Policies for

Distributed Systems and Networks. Yorktown Heights, New York. June 7-9,

2004.

2. K. Alghathbar, D. Wijesekera. Incorporating Access Control Policies in

Requirements Engineering. Journal of Computcr and Information Science (HCIS).

vol. 5, no. 3, Mar. 2004.

3. K. Alghathbar, D. Wijesekera. authUML: A Three-phased framework to analyze

access control specifications in Use Cases. In proc. of the Workshop on Formal

Methods in Security Engineering (FMSE), Washington, DC. October 2003. ACM

Press.

4. K. Alghathbar, D. Wijesckcra. Consistent and Complete Access Control Policies in

Use Cases. In proc. of the 6th International Conference on the Unified Modeling

Language (UML'03), San Francisco, CA. October 2003.

153

www.manaraa.com

154

5. K. Alghathbar, D. Wijesekera. Modeling Dynamic Role-based Access Constraints

using the UML. In proc. of the I st International Confercnce on Software Engineering

Research & Applications (ICSERA '03), San Francisco, CA. June 2003.

6. K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic Authorization

Policies. In proc. of the International Conference on Computer Science, Software

Engineering, Information Technology, e-Business, and Applications (CSITeA'03),

Rio de Janeiro, Brazil. June 5-7, 2003.

www.manaraa.com

155

CURRICULUM VITAE

Khaled S. Alghathbar was born on September 26, 1976, in the Kingdom Saudi Arabia
and is a citizen of Kingdom of Saudi Arabia. He received the B.S. in Information
Systems [rom King Saud University, Saudi Arabia, in 1998 and the M.S. in Information
Systems from George Mason University, Fairfax, VA, in 2001. During 1998-1999, he
was a teacher assistant in the College of Computer Science and Systems in King Saud
University, Saudi Arabia. He received the following certificates from George Mason
University: Information Systems Security, Elcctronic Commerce, Information
Engineering and Software Engineering. In addition, he is a CCrillicd Information Systems
Security Professional (CISSP), Microsoft Cerified Systems Engmeering in Secuirty
(MCSE: Security) and a certified CompTIA Sccurity+.

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

www.manaraa.com

Incorporating Access and Flow Control Policies in Requirements
Engineering

A dissertation submitted In p,H1lai fulfillment of the requirements for the degree of
Doctor of Philosophy at Gc,)r!!~ Mason University.

By

Khaled S. Alghathbar

B.S. King Saud University, Saudi Arabia, June 1998
M.S. George Mason University, Fairfax, VA, August 2001

Director: Dr. Duminda Wijesekera
Information and Software Engineering

Spring Semester 2004
George Mason University

Fairfax, VA

ii

Incorporating Access and Flow Control Policies in Requirements Engineeringالعنوان:

Al Ghasbar, Khaled. Sالمؤلف الرئيسي:

Wijesekera, Duminda(Super.)مؤلفين آخرين:

1998التاريخ الميلادي:

فيرفاكس، فرجينياموقع:

155 - 1الصفحات:

:MD 618333رقم

رسائل جامعيةنوع المحتوى:

Englishاللغة:

رسالة دكتوراهالدرجة العلمية:

George Mason Universityالجامعة:

Volgenau School of Engineeringالكلية:

الولايات المتحدة الأمريكيةالدولة:

Dissertationsقواعد المعلومات:

المتطلبات، الوصول، التحكم، هندسة الحاسبات، البرمجياتمواضيع:

https://search.mandumah.com/Record/618333رابط:

© 2019 دار المنظومة. جميع الحقوق محفوظة.
للاستخدام المادة هذه طباعة أو تحميل يمكنك محفوظة. النشر حقوق جميع أن علما النشر، حقوق أصحاب مع الموقع الإتفاق على بناء متاحة المادة هذه
دار أو النشر حقوق أصحاب من خطي تصريح دون الالكتروني) البريد أو الانترنت مواقع (مثل وسيلة أي عبر النشر أو التحويل أو النسخ ويمنع فقط، الشخصي

المنظومة.

https://search.mandumah.com/Record/618333

www.manaraa.com

Incorporating Access and Flow Control Policies in Requirements
Engineering

A dissertation submitted In p,H1lai fulfillment of the requirements for the degree of
Doctor of Philosophy at Gc,)r!!~ Mason University.

By

Khaled S. Alghathbar

B.S. King Saud University, Saudi Arabia, June 1998
M.S. George Mason University, Fairfax, VA, August 2001

Director: Dr. Duminda Wijesekera
Information and Software Engineering

Spring Semester 2004
George Mason University

Fairfax, VA

ii

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

