‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t oo gl

Wijesekera, Duminda(Super.) FVICY IUUPY 73

1998 HENVWN PR

b= ,9 S ,49 ‘8990

1-155 rolxaall

618333 :MD 3,

ol Jlw, rSgizeall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

‘ ‘ bgamo Boixll gra> anghuiall s 2019 ©
plasiwl bsloll 038 dcbib ol Juoxs diSoy abgaxo sl B> groxr Of lole il Bsi> wlxol go glsall Byl (sle el aslio b3kl 03
s ol il Bgi> wlol oo wdas 2urai Gss (eigiSIVl Ayl ol iyl gdlgo Jio) @iy ST pwe oaisidl ol gl of Gl gios oasd (suaseidl

ol L) fyl_i.lsl

.anghioll

www.manaraa.com

https://search.mandumah.com/Record/618333

Chapter 1

INTRODUCTION

1.1 Problem Statement

Today, most security requirements, such as access and flow control policics, are
considered only after the completion of functional requirements because security
requirements are considered non-functional requirements, which are difficult to express,
to analyze, and to test, and becausc languages used to specify access and flow control
policies (such as FAF [JSSSO1], PERMIS [C002], Author-X [BBC+00] and PDL
[LBN99]) are separate from the languages used to model functional requirements (such
as UML) during the softwarc development life cycle. Consequently, security
considerations may not be properly cngineered during the softwarc development life

cycle, and less secure systems may result.

1.2 Thesis Statement

Devanbu and Stubblebine [DS00] challenged the academic community to adopt and
extend standard modeling languages such as UML to include security-related features. I

accepted this challenge by showing that:

It is possible to incorporate access and flow control policies with other functional
requirements during the early phases of the software development life cycle by
extending the Unificd Modeling Language (UML) to include security featurcs as
first class citizens.

It is possible to develop tools that help software analysts and designers to verify
the compliance of the access and flow control requirements with with policy

before proceeding to other phases of the software development process.

I substantiated my claim by:

I

Extending the metamodel of UML to incorporate access and flow control
policies in the design.

Enhancing and extending the Use Case model by providing a unified
specification of access and flow control policies using object constraint
language (OCL).

Designing a formal framework to detect inconsistency, incompleteness, and
application-definable conflict among access control policies.

Designing a formal framework that verifies the compliance of information
flow requirements with information flow control policies.

Integrating both frameworks to analyze both access and flow control policies

at the same time.

1.3 Significance of Contributions

Access and flow control policies in software sccurity have not been well integrated with
functional specifications during the requirements engineering and modeling phases of the
software development life cycle. Security is considered to be a non-functional
requirement (NFR) [CNY+00]. Such requirements are difficult to express, analyze, and
test; thercfore, they are usvally evaluated subjectively. Becausc NFRs tend to be
propertics of a system as a whole [CNY+00, NE0OO],, most security requircments arc
considered after the analysis of the functional requirements [[DS00]. The consequences of
ignoring NFR arc low-quality and inconsistent software, unsatisfied stakeholders, and
more time and cost in re-engineering [CNY+00]. Therefore, integrating security into the
software life cycle throughout all its phases adds value to the outcome of the process.

It is important to specify access control policies precisely and in sufficient detail, because
ambiguities in requirements specifications can result in crroncous software [GWS89]. In
addition, careful consideration of requirements — including NFRs — will result in reducing
project cost and time, because errors that are not detected early can propagate into the
other phases of the software development life cycle, where the cost of detection and
removal is high [DS00] [Boe81]. By analyzing large projects in IBM, GTE, and TRW,
Boehm [Boe81] computed the cost of removing errors in general made during the various

phases of the development life cycle, as shown in table 1.

Table 1: Relative Cost to Correct an Error

Phase where the error is tound Cost ratio
Requirements 1
Design 3-6
Code 10
Development test 15-35
Acceptance test 40-75
Operation 30-1000

In UML-based software design methodologies, requirements are specified using Use
Cases at the beginning of the life cycle. Use Cases specify actors and their intended usage
of the envisioned system. Nevertheless, a Use Casc is written in natural language, which
lacks the precision and specification of security [DS00]. Therefore, there is a necd to
provide a unified language for representing sccurity features, such as access and flow
control policies [DS00, CNY+00], in the early phascs of the software development lifc
cycle. This language must allow software developers to model access control policics in a
unified way and it must be compatible with other requirements modeling languages.

In addition, there is a need to verify the compliances of security requirements with the
security policies before proceeding to other phases of the software development life cycle
[NEQO, Pf198, RusO1]. 1 used Logic as the underlying language beeause it is potentially
amenable to automated rcasoning [NE0O, RusO1].

My dissertation partially fulfills Devanbu and Stubblebine’s challenge [DS00], because
totally satistying their requirement has to consider all aspects of security in all phascs of

the software development life cycles. My contributions meet the challenge in the

requirements, analysis and design phases only by specifying and verifying access and

flow control policies there.

1.4 Summary of Contributions

My dissertation introduced several contributions that assist software developers to specify

and analyze access and flow control policies during the first three phases of the software

development process, requirement specification, analysis, and design phases. The
following summarize my contributions:

6. I extendcd the UML Metamodel in a way that allows systems designers to model
dynamic and static access control policies as well as flow control policies in a
unified way. The extension provides a better way to integrate and impose
authorization policies on commercial off-the-shelf (COTS) and mobile code. 1
showed how this extension allows non-security experts to represent access control
models, such as Role-Based Access Control (RBAC) and workflow policies, in an
uncomplicated manner.

7. I extended the Use Case model to specify access control policies precisely and
unambiguously with sufficient details in the UML’s Use Case. I added to Use
Cases by using something analogous to operation schemas [SS00], which I called
access control policy schemas. The extension employs the Object Constraint
Langunage (OCL) [OCLO1}, which is more formal than thc cxisting Use Case

language (natural language) for specifying access and flow control policies.

8. Ideveloped a framework called AuthUML that formally verifies the compliance
of access control requirements with the access control policies during the
requirement specification and analysis phases using Prolog style stratified logic
programming.

9. T developed a framework called FlowUML to verify the proper enforcement of
information flow control policies on the requirements.

10. T incorporated the analysis of both access and flow control requircments by
integrating both AuthUML and FlowUML. The incorporation of both frameworks
mmproves the analysis and detection of improper access and flow control
requirement.

Based on my work 1n this dissertation I published several papers.

1.5 Organization of the Dissertation

Chapter 2 summarizes the literature that is rclated to my work, it also analyzes and
compares the work with what I presented in this dissertation. Chapter 3 summarizes
background works that are used as bases for my extensions, such as the UML, FAF and
Operation Schemas. Chapter 4 presents the extension of the UML Metamodel to design
access and flow control policies, and it shows the application of the extension on
different existing access control models. Chapter 5 presents the extension of the Use Case
to formally specify access and flow control requirements, and it shows the extension of
the Use Case diagram and how to analyze the access control requirements visually.

Chapter 6 introduces AuthUML, a framework to verify and detect improper access

control requircments. Chapter 7 presents the FlowUMIL., a framework that analyzes
information flow control requirement and detects violation of information flow control
policies. Chapter 8 incorporates the analysis of both AuthUML and FlowUML and
produces a coherent framework to verify both access and flow control requirements.
Finally, summary of my contributions and discussion of future research are presented in

chapter 9.

http://www.tcpdf.org

*o o iinghiiall jla
. DAR ALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S tosawnd)| gl

Wijesekera, Duminda(Super.) VICY IOVPY 73

1998 HENVWN PR

b= y9 S48 ‘8990

1-155 1olxaall

618333 :MD 38,

ol Jlw, rSgizall g9

English :axlll

ol,9:8> allw, ragolell as)all

George Mason University ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzodl (Olowll dcwiid Sl (Jaogll coldlnioll :Raolgo
https://search.mandumah.com/Record/618333 ol

abga=o Jgs=l gro> .dnglhioll jls 2019 ©
plaziwlW 8sloll 0ia aclb of Juoze liSay .abbgazeo puiuill Dgéi> Ran> ol lale oyl Ygé> oleol go Rdgall Syl (ale sby a>lio 8sladl 01
s ol il Bgi> lsesl o whas auyrai gs (i xSIVI 4yl ol iVl gdlge Jio) @iy Si jue piidl of Jugmdl ol draidl gingg dnsd suazeiil

aoglaioll

www.maharaa.com

https://search.mandumah.com/Record/618333

Chapter 2

LITERATURE REVIEW

Several new papers have been published in this area; those works concentrate on different
aspects of security features and software development phases. However, there are some
drawbacks in those works that nced to be improved; further, some additional issues need
to be addressed.

There are several aspects of security that need to be integrated into the software
development process such as access control policics, flow control policies,
authentication, integrity, and encryptions. Likewise, there are different phases of software
development such as requirements specification, analysis, design, implementation, and
testing, that require security to be integrated with them for better secure software
systems.

In this dissertation, I have focused on five aspects of integrating access and flow control
policies during requirement engineering. First, I extended the UML metamodel to allow
the proper specification of access and flow control policies. Second, I extended the Usc
Case modc! to formally specify access and flow control policies. Third, 1 developed a
framework to verity the access control requirements. Fourth, I developed a framework to

verify the flow control requirements. Both frameworks detect improper access and flow

control requirements as early as possible during the software proccss. The following

scctions summarize the hteratures related to cach aspect.

2.1 Extending the UML Metamodel and Use Case Model

Lodderstedt ef al. [LBDO02] proposed a methodology to model access control policies and
integrate them into a model-driven software development process. The work was based
on RBAC as a security model. My work is differs from [LBDO02] by concentrating on
specifying dynamic access control policies (e¢.g. dynamic separation of duty) and
workflow as well as static access control policies. Furthermore, I focused on dynamic
design modecling while Lodderstedt’s focus was on static design model. Also, my
prospective view of enforcing constraints is from the flow view not tfrom the static view.
There are several i1ssues missing from the work of Lodderstedt ef al. First, history-related
constraints cannot be modeled with Lodderstedt’s method. Second, the metamoedel is not
flexible enough to model all access control policics, because it is based on RBAC only.
Third, the metamodel cannot restrict people in scnior roles from performing certain junior
operations and it cannot specify conflict among users, operations, or roles.
Fernandez-Medina et al. [FPS01] introduced a language called Object Security constraint
Language (OSCL). OSCL extends the Object Constraint Language (OCL) [WK99] to
specify security constraints to represent multi-level security systems. Also, Fernandez-
Medina et al. in [FMM+02] propesed an extension to the Use Case and Class models of
the UML. The extensions of Use Case diagram which they introduced were stereotypes:

<<safe-UC>> and <<accredited -actor>> as an indication of a secure Use Case and

authonized actor. Their work is focused on database security and shows how to model
multilevel security on the static diagram such as Class diagram by introducing tagged
values to classes, attributes, operations, and association ends wherc those tagged values
indicate the security level of the element. However, this extension did not rcpresent
dynamic authorization and workflow policies. Alsp, the cxtension was limited to
multilevel security model. Finally, the extension did not address the type of authorization
that 1s granted to the accredited actor, nor the integrity constraints associated with such
authorizations.

Brose et af. [BKLO02] extended the UML to support the automatic generation of the
access control policies to configure a CORBA-based infrastructure for view-bascd access
control. It stated permissions and prohibitions of accessing system’s objects (read, write,
gxceute...etc) explicitly by writing notes that are attached to actors in the Use Case
diagrams. However, their work was based on static specification of access policies but it
could not model dynamic access control policies such as Dyramic Separation of Duty nor
it could enforce some flow requirement such as the order of operations in a specific
workflow systems. Although, that work covered most parts of the software development
life cycle, it did not integrate access control policies in the interaction diagrams such as
the Sequence diagram, and that what I presented in this dissertation. In addition, the
specification language of that work was natural language which is imprecise. Therefore, I
used the OCL to specify the constraints more precisely. Finally, that work considered role
hierarchies, but no propagation or conflict resolution policies have been addressed for the

inherited authorizations.

Jurjens’s work in [Jur01] extended the UML to integrate standards concepts from formal
methods regarding multi-level secure system and security protocols. His work was based
on Mandatory Access Control, as in [FPS01] [LBDO02], limiting the number of access
control policies that can be specified using that extension.

Koch and Parisi-Presicce proposed in [KP00] how to integrate access control policies
using existed UML diagrams (Class and Object diagrams). Both their work and mine
share the importance of specifying access control constraints by using the OCL.
However, my cxtension focuscs more on the constraints that is why I introduced a
constraint repository called the Security Policy Constraint (SPC). Also, my work focus
more on specifying the dynamic access control policies by mtroducing the necessary
repository for Conflict sets, History logs, Business Task. In addition, their work 1s based
on static UML diagram (Class and Object diagrams) while my work relies on interaction
diagram (Sequence diagram). They proposed to verify the coherent of access control
specification by using the graph-based formal semantics while I used logic-based rules.
Shin and Ahn work in [SA00] modeled RBAC in the UML notations from three views:
static, functional and dynamic view. Their work focal point was representing RBAC in
the UML but not how to incorporate authorization models as RBAC 1n a real sccure
application design. Although, the work models constraints that are imposed on user, role,
session and permission, the work did not provide more fine-grained specification of
constraints needed to design dynamic authorization policies.

Ahn and Shin specified in [ASO01] role-based authorization constraints using OCL. The

work discussed several authorization constraints then presented it by OCL. However, the

work did not show how to represent role-based authorization constraints using OCL and
how to model those constraints using the UML diagrams that helps developers to
integrate those constraints in the design phase.

Fernandez and Hawkins proposed in [FH97] an extension to the Use Cases. The
extension was by means of a stereotype that states the access constraints. In addition, they
proposed an approach to generate rights for roles. That work did not address
complications arising out of hierarchies and how to resolve access control conflicts.

Ray et al. [RLK+03] proposed a technique to model and compose RBAC and MAC using
the UML. Also, [RLK+03] showed how to identify conflicts arising due to such
compositions. However, they do not address writing and enforcing access control
constraints in detail as donec in [AgWO03]. That work of [RLK+03] focused on
representing access control model but not representing access control constraints.
Therefore [RLK+03] could be classified as a step towards integrating RBAC and MAC in
the UML rather than addressing integrating general access control policies using the
UML.

Operation schemas introduced by Sendall and Strohmeier [SS00] enriched Use Cases by
introducing conceptual operations and specifying their properties using OCL syntax.
Operation schema specifies operations that apply to the whole system to be taken as one
cntity. One of the advantages of operation schemas is that they can be directly mapped to
collaboration diagrams that are used later in the analysis and design phases of the
softwarc devclopment life cycle. I extended that work to express access and flow control

policies in the requirement phasc.

2.2 Analyzing Access Control Requirements

Ahn and Sandhu purposed in [AS00] a formal language called RCL2000 for specifying
rolc-based authorization constraints. It identified useful role-based authorization
constraints such as prohibition and obligation constraints using RCL2000 but its main
users arc sccurity policy designers and security researchers who need to understand the
organization objectives. RCL2000 did not address state or time nor it specified history
bascd scparation of duty. Also, RCL2000 is not designed to be used in the software
requirements and analysis. In contrast, I developed a formal language that is useful
during the software development to detect inconsistency, incompleteness and conflicts
among access control requirements.

In the area of access control enforcement language, Brose [Bro00] presented an access
control language that allows security administrators to specify access control policies in
CORBA. However, the language (hd not detect inconsistency or conflict of access control
policies.

There are several access control mechanisms such as FAF [JSSS01], PERMIS [C002]
and Author-X [BBC+00]. However, the FAF 15 dittcrent from others because it addresses
three important issues: 1) propagation of authorization, 2) managing conflicts between
positive and negative, 3) providing a final and unique access control decision (positive or
negative) for each request. Morcover, FAF does not bind cach issue to a specific policy
but leaves the choice of policy open - resulting in a more flexible access control model. It
provides the system secunty officer with rules that can enforce authorizations, derived

authorizations, and conflict resolution and integrity constraints checking.

FAF is not designed to be used during the software development, rather, it is designed to
be used in real-time checking of system calls. I presented a framework called AuthUML
that advances the application of FAF to the requirements specification phase of the
software development life cycle. Therefore, AuthUML is a customized version of FAF
that is to be uscd in requirements enginecring. Therefore, AuthUML uses similar
components of FAF with some modification in the language and the process to suit the
Use Case model used in UML. Because FAF specifies authorization modules in
computing systems, FAF is invoked per cach authorization request. Contrastingly,
AuthUML 1s to be used by requirements engineers to avoid conflicts and incompleteness
of accesses. Therefore, while FAF is used frequently to process each access control
request during execution, AuthUML is to be used less frequently during the requirements
cngineering phase to analyze the access control requirements.

Koch and Pansi-Presicce presented in [KP03] an approach of model-driven to specify
access control policies in the analysis phase of the software development life cycle. They
showed how to derive access control requirements models from functional models. The
access control model is represented by graph-based formal semantic which allow the
verification of security constraints. However, my work is based on formal logic instead of
graph-based which it is potentially amenable to automated rcasoning that is useful in

analysis [Rus01] [NEOO].

L5

2.3 Analyzing Flow Control Requirements

Although, information flow has a rich publication history, most papers concentrated on
designing newer and richer flow control models. For example, based on the discretionary
access control model, Samarati et al. [SBC+97] described a model that prevents
information leakage by Trojans. Also, Bertino et al. [BA99] presented a logic
programming based specification framework to enforce workflows constraints. Although
important, thesc papers did not address flow policies and verifications techniques that go
hand in glove with software design life cycle models that use UML.

At the other cnd, Myers [Mye99] presented JFlow, an extension to Java that adds
statically checkable flow constraints. However, JFlow can be used during the
implementation phase while FlowUML which is the framework I presented is to be used
during the requirements, design and analysis phases of the software development life
cycle. JFlow concerns more on controlling the information flow between the variables
and objects in the programming language.

FlexFlow of Chen et al. [CW]03] is logic bascd flexible flow control framework to
specify data-flow, workflow and transaction systems. Although FlowlIMI and FlexFlow
analyze and prevent unauthorized flows, FlowUML is different from FlexFlow in many
aspects: 1) FlexFlow is meant to be used at the execution time, while FlowUML is
intended to be executed earlier in the development process to prevent unsafe information
flow from getting implemented, 2) FlowUML looks at validating information flow

control from the software engineering perspective view rathcer than the system

perspective view, 3) FlowUML add the time of flow and the imtiator of flow as factors to

analyzc information flow that are absent in FlexFlow.

2.4 Summary

In the area of integrating access control policies into the design phase of the software
development life cycle, most of the current works — I know- are built to specify static
policies but not dynamic. Also, they are designed to fit with a specific access control
model such as RBAC or MAC, but not general enough to express other access control
policies or other access control model. In the area of analyzing access and flow control
policics during the analysis phase, to the best of my knowledge, I am not aware of work
that combines the analysis of both access and flow control policy during the carly

software development life cycle.

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Incorporating Access and Flow Control Policies in Requirements Engineering Ulgusll
Al Ghasbar, Khaled. S ool @il

Wijesekera, Duminda(Super.) HRVICY IROPS -7

1998 roS>Maodl gy, W

a9 oS ,49 ‘8990

1-155 olxaall

618333 :MD 3,

&0l Jilw, ' Sgizeol| g9

English azll

ol)e:Ss allw, rauodell a>)all

George Mason University 1ol

Volgenau School of Engineering adsll

&,55,0V bzl LVl :égoll

Dissertations 10logleoll aclgd

Olzeo,dl colowll dwaid pS=dl (Jawogll coldlasoll :&aolgo
https://search.mandumah.com/Record/618333 ol

abge=o Jga=ll guo> .anglaioll Hl> 2019 ©
plaziwlW dslall 0in aclb ol Jroz cliSoy .abgazo puiuill Ogé> gao ol lole uidll Dgé> oleol 2o &dgall SVl (e sly a>bio b3lall 0ia
s ol il Bgi> Llsesl (o wsbas puyai s (g iSIVI 4l of sVl g8lge Jio) @liwwg ST eyl of Lozl ol drwidl giogg hid suazer!
.aoghioll

www.maharaa.com

https://search.mandumah.com/Record/618333

Chapter 3

BACKGROUND

This chapter summarizes the background used during the disscrtation, e.g., the Unificd
Modeling Language (UML), Flexible Authorization Framework (FAF) and Access

control models.

3.1 Unified Modeling Language

Modeling is the bluepnint of software applications. It is used to guarantee that all business
requirements are considercd before starting coding. Also, modeling is used to analyze
system’s rcquirements and their consequences. In the 1980s and 1990s, several object-
oriented analysis and design methods introduced with different notations. Therefore,
there was a need for standardizing modeling notations. The outcome was the Unified

Modeling Language (UML) [OMGO1].

The following subsection will draw a brief background of the UML and some of its

components that ar¢ rclated to my work.

3.1.1 Overview of the UML

The UML is defined according to Beoch et al. [BRI99] as follow: “The UML is a
langnage for visualizing, specifying, constructing and documenting the artifacts of a

software-intensive system.”

The UML was first developed by Grady Booch, Jim Rumbaugh and Ivar Jacobson. In
1997, the UML has been submitted to and approved by the Object Management Group
(OMG) [OMGO1] as the OMG standard for object-oriented modeling. Since then, many
versions of the UML have been developed, and the current version is 1.5. OMG’s

Revision Task Force (RTF) is working on version 2.0.

An important fact is that the UML is not a method, but a modeling language. Most
methods consist of a modeling language and a process. The process consists of steps
while the modeling language is a collection of notions that the method uses to convey the

requirement to a design [Boe81].
The UML has several advantages:

» The UML is an expressive language with a rich set of notations that lets
designer model any type of application that runs on any kind of hardware,
programming languages or operating systems. The UML has multiple views
to represent requirements and specifications.

» The UML is beneficial for communication. It is a unified language that allows
one to communicate conceptual modeling with others clearly. It is between

natural language, which is too imprecise, and code that is too detailed.

» The UML is extensible. The well-defined extension mechanisms that the
UML has presented provide the possibility of extending the UML to facilitate
new domains such as security and performance. The extension constructs are
stereotypes, tagged values and constraints. Stereotypes are used to define new
types of model ¢lements or building blocks. Tagged values extend the
metamodel types by adding new attributes. Constraints extend the semantics
of the model element by adding or modifying rules.

There are twelve kinds of diagrams in the UML that are categorized as follow:

= Structural Diagrams: These diagrams represent the static part of the model
that is conceptual or physical. The structural diagrams include the Class
Diagram, Object Diagram, Components Diagram and Deployment Diagram.

= Behavioral Diagrams: These diagrams represent the dynamic part of the
model over time and space. The behavioral diagrams contain: the Use Case
Diagram, Sequence Diagram, Activity Diagram, Collaboration Diagram and
Statcchart Diagram.

= Model Management Diagrams: These are the organizational parts of the

UML. They include Packages, Subsystems and Models.

3.1.2 Use Case

Use case is a behavioral diagram used to model requirements at thc beginning of the

software development life cycle. According to Booch er al. [BRI99] “4 use case is a

20

description of a set of sequence of actions, including variants that a system performs to

vield an observable result of value to an actor”

Use cases specify actors and their intended usage of the cnvisioned system. Such usage -
usually, but not always - is specified in terms of the interactions between the actors and
the system, thereby specifying the behavioral requircments of the proposed software. The
scenario contains a normal scenario, and alternatives. The actor represents a coherent set
of roles that the users of a use case exercise during the interaction. An actor may be a
human, a hardware device or an cxternal system that needs to interact with the system

under dcsign.

Use cases are wntten in an informal natural language that is casy for modelers and
stakeholders to use and to understand. There is no standard on how to develop the use
case or to what degree a modeler should go. Thus, different people may write varying
degrees of details for the same use case. A usc case may carry a high level goal such as
the whole system goal, or a low level operation. The modeler is free on which degree of
decomposing. A use case is a textual description that may include — but is not limited to:
actors, preconditions, post conditions, normal scenarios and abnormal or exceptional

scenarios. Figure 3.1 shows an example of a usc case description:

In contrast, a use case diagram visualizes actors and their relationships with use cases. A
use case diagram is essential for visualizing, specifying, and documenting the behavior of
an element. It provides a perspective view of the system interaction. See Figure 3.2 for an

example of a use case diagram.

21

Use Case Name: Sign a check

Actor: Manager

Precondition: The check must be issued before and not by the same user.

Normal Scenario: Manager searches for checks to be signed, and makes sure that
the check’s amount is available at the Bank and verify the check’s amount
with the invoice total amount. If all conditions are correct then the
Manager sign the check.

Abnormal Scenario: if the check’s amount is not available at the company’s bank
account, then the manager postpone the signature of that check.
If the check’s amount is different from the invoice’s total amount then
Manager send it to the Clerk for correction.

Postcondition: check is signed and amount is detected form the company's bank

account.

Figure 3.1, Use Case Description

- N

P Cmenams
Comeoma >

Manager \

Figure 3.2: Use Case Diagram

S/

22

The structurc of the use case can vary. There arc three relationships that can be used: an
include relationship can be used to reduce the duplications of similar behavior across
more than one use case. An extend rclationship can be used when describing a variation
on normal behavior in another use case, i.c., splitting the normal scenario from the
variation scenarios. A generalization relationship can be used when two use cases do the
same work, but onc of them does morc (i.e. inheritance); it is just like the generalization

among classes.

I'__I caller exchange [__][gs" Tesiy Err

a: il recoiver

e

b dial tone

<z dial digit
ringing tone phons rings
answeaer phone
stop tone slop ringing

i 1 i

Figure 3.3. An Example of Sequence Diagram

3.1.3 Sequence Diagram

A sequence diagram is a behavioral UML diagram. The interaction diagrams describe
how groups of objects collaborate in a particular behavior. For each use case, modelers
need to specify how objects that participate in the use casc interact with each other to

achieve the goal of the use case. Sequence diagram shows the sequence of messages —

23

ordered with regard to time — between objects. See Figure 3.3 for an example of a

sequence diagram taken from [OMGO1].

3.1.4 Object Constraint Language

A writing constraint is necessary because not all constraints can be drawn in the UML.
The constraint must be relatively easy for a software developer to write and read. Also, it
must be precise enough to prevent ambiguities and imprecision. A natural language 1s
easy to rcad and write but it is imprecise. On the other hand, formal languages are
precise, but they require a strong mathematical background. OCL is based on basic set
theory and logic and it is intended to be used by the software developers. OCL can be
used to specify invariants, preconditions, postconditions and other kinds of constraints in

the UML [WK99].

OCL employs the design by contract principle, where modclers can use OCL expressions
to specify the pre- and postconditions of operations on all classes, interfaces, and types.
OCL is an expression language where it has no side effect where it returns a value, but
cannot change any values. OCL is a typed language. To be well tformed, OCL
expressions must obey the type conformance rules of the language. OCL provides
elementary types, ¢.g., Boolean, Integer, Set, Bag, and Sequence, etc. According to the

OMG’s OCL specification of OCL [OCL01], OCL can be used to:

= Specify invariants on classcs and types in the class model.
= Specify type invariant for Stereotypces.

» Describe pre- and postconditions on Operations and Methods.

24

» Specify constraints on operations.
» Describc Guards.

= Function as a navigation language.

3.2 Flexible Authorization Framework

The Flexible Authorization Framework (FAF) of Jajodia er al. [JSSS01] 1s a logic-based
framework to specify authorizations in the form of logical programming rules. It uses a
Prolog style rule base to specify access control policies that are used to derive
permissions. It is based on four stages that are applied in a scquence, as shown in Figure
3.4. In the first stage of the sequence, some basic facts, such as authorization subject and
object hierarchies (for example, directory structures) and a set of authorizations along
with rules to derive additional authorizations, are given. The intent of this stage is to use
structural properties to derive permissions. Hence, they are called pr opaganion policies.
Although propagation policies arc flexible and expressive, they may result in over
specification (i.e., rules could be used to derive both negative and positive authorizations
that may be contradictory). To avoid conflicting authorizations, the framework uses
conflict resolution policies to resolve conflicts, which comprises the second stage. At the
third stage, decision policies are applicd to ensure the completeness of authorizations,
where a decision will be made to cither grant or deny every access request. This is
nceessary, as the framcwork makes no assumptions with respect to undenivable
authorizations, such as the closed policy. The last stage consists of checking for integrity

constraints, where all authorizations that violate integrity constraints will be denied. In

25

addition, FAF ecnsures that every access request is either honored or rejected, thereby

providing a built-in completeness property.

A

uthorizavon

i¥ Table History Table

I |

u] \5 :

1A\ I

['
(o.5.+a) Propagation ' Conflict resolution
— Poicy | Poicy |

Figure 3.4. FAF System Architecture

granted/
‘ denied

Decision Policy |‘ C('J"::g;gts

3.3 Access control policies

Organizations have a sct of policies to maintain their goals. One important policy is the
access control policies. Access control policies bind the actions or activities that a
legitimate user of a computer system can execute [SS94]. They protect information from

unauthorized access.

26

3.3.1 Discretionary Access Control

Discretionary access control {DAC) restricts the access of subject to object based on the
subject’s identity and authorization. The object’s owner at his/her discretion allows or

disallows other subject to access the object.

It is a flexible model that has been adapted widely by commercial and industrial systems.
However, DACs do not control the usage of information after it has been legitimately
accessed. That may lead to low assurance of flow of information. For example, a subject
that i1s authontzed to read the data of an object can wrilc that object’s data to another
object that allows subjccts who are not authorized to read the first object to rcad the

second object’s data.

3.3.2 Mandatory Access Control

Mandatory Access Control (MAC) restricts the access of subject to object on the basis of
classification of subjects and objects in the system. All objects are labeled with levels of
sensitivity and all users have clearances that allow them to access objects according to the
level of the objects. Flow of information is controlled in MAC-based systems by
preventing information read from a high-level object to flow to a low-level object. MAC

is widely used in military and government systems.

27

3.3.3 Role-based Access Control

In RBAC, the central 1ssuc 1s roles, which are absent in other two access control models.
Role-based access control (RBAC) [SCFY96] governs the access of subject to object

based on the role that the subject assumes during execution.

Figure 3.5 depicts the RBAC model. A user can be a human being, a process or a device.
A role 1s a job function or title within the organization that describes the authority and
responsibility conferred on a uscr assigned to the role. Permission is an approval of a
particular action on an object. Roles are structured in a partial order rclationship or
hierarchy. A senior role inherits all permissions of its junior role. Each role has a set of
permissions that allow the role to complete its job or function. A user must assume a role
by invoking a session to perform the role’s job. A user can be a member of more than one

role and a role can include more than one user.

Role Hierarchy
1< ‘b

User Assignment Parmission Assignme:nt,

Users «4 »» Roles w««4
v . . :
R P
,,,,,, I Constrainis
Sessions

Figure 3.5. Role-based Access Control Model

RBAC has several benefits [SCFY96]:

Authorization management: RBAC breaks the authorization into users, roles
and permissions. This division cases the management of authorization, i.c.,
invoking and revoking a user from a job 1s a straightforward step of modifying
the user assignment relationship.

Hierarchal roles; another simplification of authorization management is the
hierarchal relationship among roles. It is a relation of generalization/
specifications where a senior role inherits all the permissions of its junior role.
Least privilege: only the permissions required for the task performed by the
user in the role are assigned to the role. Least privilege principle reduces the
danger of damage that may be result from errors or intruders masquerading as
legitimate usets.

Separation of duties: completing a critical task needs the invocation of
mutually exclusive roles. It prevents errors and frauds [CW87]. An example
of mutual exclusive roles is the account payablc manager and the purchasing
manager; a uscr must not assume both roles. There are two major types of

separation of duties: static and dynamic.

28

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t oo gl

Wijesekera, Duminda(Super.) FVICY IUUPY 73

1998 HENVWN PR

b= ,9 S ,49 ‘8990

1-155 rolxaall

618333 :MD 3,

ol Jlw, rSgizeall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

‘ ‘ bgamo Boixll gra> anghuiall s 2019 ©
plasiwl bsloll 038 dcbib ol Juoxs diSoy abgaxo sl B> groxr Of lole il Bsi> wlxol go glsall Byl (sle el aslio b3kl 03
s ol il Bgi> wlol oo wdas 2urai Gss (eigiSIVl Ayl ol iyl gdlgo Jio) @iy ST pwe oaisidl ol gl of Gl gios oasd (suaseidl

ol L) fyl_i.lsl

.anghioll

www.manaraa.com

https://search.mandumah.com/Record/618333

Chapter 4

EXTENDING THE UML METAMODEL

As the UML becomes the de-facto language for software design, it is important to have a
sufficiently rich linguistic structure 1o model security specifications accurately. This
chapter presents such an extension to the UML to specify dynamic access control policies
in the design phase by extending the UML metamodel with a security policy specification
and enforcement module, a log of method call histories and business tasks. This chapter

shows that it is possible to specify access and flow control policics using the elements of

the UML.

The extension of the metamodel is not a new access control model, but rather a sct of
related clements necessary to model existing access control models in the UML.
Thercfore, such elements can be incorporated differently for cach access control model.
An advantage of this work is the ability to enforce dynamic access control and flow
control policics with the UML. These aspects of security cannot be expressed in static
UML diagrams. Thus, I model them as constraints over interaction diagrams. In addition,

I also focus on flow constraints using the industry standard, OCL.

29

30

Most initiatives proposed by rcsearchers toward inlegrating security nto the design of
systems lack the representation of the dynamic access control and workflow policies.
Their approaches are focused on static access control policies that can be modeled using
static diagram. Dynamic access control policics rely on system states and other histories
to authorize systems’ users. For example, Dynamic Separation of Duty principles rely not

on user’s privileges, but also on cxecution history of operations.

The reminder of this chapter is organized as follows. Section 4.1 presents an example to
be usced during the chapter to show the features of the ncw Metamodel. Section 4.2
presents the new Metamodel. Section 4.3 shows how to apply the new metamodel
extension to the running example., Scction 4.4 presents three case studies of existed
access control model and describes how to represent those models using the new

Metamodel.

4.1 Running Example

This example demonstrates the application of the extension. It is based on RBAC, and it
is about a typical purchasing process. As shown in Figure 3.1, it consists of three use
cases: Record invoice arrival, verify invoice validity and authorize payment that is

ordered as shown in Figure 4.2

5

Clerk

i

Purchasin? Officer

Q‘W

Superisor

Purchasing

Authorize payment

/

Figure 4.1. Use Cases for the Purchasing Process

The example requires different types of authorization policics:

I. Required Sequence of operations where cach use case (except the first) has a

prerequisite action, as shown in Figure 4.2. For cxample, Authorize payment

cannot start until verify invoice validity is complete.

2. Role Restrictions where cach operation can only be exccuted by a particular role. For
example, the Verify invoice validity can be invoked only by the Purchasing Officer
role. However, the Purchasing Officer role is a part of a role hierarchy where lower
roles inherit higherrole permissions [SCFY96]. Therefore, the Supervisor role is
allowed to execute the Verify invoice validity, because (s)he inherits the permission of

the Purchasing Officer role. Nevertheless, this is not always preferred in real world

sccnarios. Therefore, there should be a way to explicitly restrict certain roles.

32

|invuice arrivat l——> nyoices : paymeni
| \ validity

kS S

= —.
| Record ﬁ(Venly B Authorize
—
|
A

L

Purchasing Officer

Clerk supenIsor

Figure 4.2. Sequencing of Purchasing Process Workflow

3. Dynamic Separation of Duty policy states that no user is allowed to perform all - or
a specified subset - of the three operations on the same invoice, in order to avoid
fraud. For example, any actor that is allowed to record the arrival of invoices must not
be allowed to verify the validity of the same invoice. In my model, it is possible to
enforce finer dynamic access control policies by restricting not just the roles, but the
users as well.

4. Conflict avoidance and/or resolution policy can be enforced to avoid any conflict,

cither between simultaneously active roles or operations permitted for such roles.

4.2 Extension to the Metamodel of UML

This section presents my extension of the UML metamodel that allows system developers
to design dynamic authorization and workflow policies in the de¢sign phase using the

UML.

My metamodel extends the UML’s core package [OMGOL] that defines basic types

required to model objects such as classes, attributes, operation and associations. I do so

33

by using stereotypes for new types and ragged values for new attributes on existing types.
Explicitly, T added three new metamodel types: 1) security policy constraints (SPC) that
hold and impose constraints necessary to model sccurity, it plays the role of monitor, 2) a
history log that records all actions executed by the system and 3) business tasks that act
as a reference architecture for encapsulating related tasks within a single entity. The new
metamodel extensions are sufficiently flexible to accommodate not only RBAC, but also
other access control models and workflow policics. Following subsections explain the

metamodel 1n detail.

4.2.1 Security Policy Constraints

SPC is a specialized type of constraint element in the Core package of the UML’s
metamodel [OMGO1]. Tt is shown with a broken line in Figure 4.3 with the UML core
metamodel, Therefore, SPC can be related to any specialized elements from
ModelElement. For instance, SPC can be related to Class, Operation, Atiribute or
Association. SPC has two associations, one with itself and the other with the Constraint
element. Thesc associations are used to refer to other constraints. Therefore, SPC is a set
of explicit or implicit constraints that are imposed in association with other SPCs or

constraint ¢lemenits.

ModelElemnent

+constraintElement

Feature

o

.

+

GeneralizableElement,

Relationship

i

|StmcuralFaature

BehavioraiF eature Classifier

i

1

T

AN

Attribute

Operation

Class

Association

ConstraintRelationship
.

‘] +constraint

Constraint

7N

]
t
|
| Generalf}
: |
[1
i 1
: i
)
! |
H 1

e

_ Ié-e;.lrityPolicyConstraintl -

Figure 4.3. Security Policy Constraints® Relationship in the Core Package

onsiraint

34

Table 4.1 shows an cxample of an SPC from the authorize payment operation in the

running example, the SPC consists of three constraints written in OCL. The first

constraint limits role access to operations. The second constraint makes sure that the

current user is not the same one that performed the prerequisite task. The third constraint

specifies operation prerequisites. These constraints are just an example of the types of

constraints in the SPC. They are written in a generic way that can be applied to other

SPC’s of other objects. However, constraints can also be written in a specific way (e.g.,

by explicitly naming the object, role, user and operation in the constraint), but that will

limit their re-usc.

35

Table 4.1. An Example of the SPC of the Authorize Payment Operation

Security Policy constraint (SPC)

Operation Policy Constraint(s)

Authorize_ Role (User-»select{ user=CurrentUser)).role— intersection
payment Restriction (CurrentOperation.Allowedroles)— size>0
AND (User—select(user=CurrentlUser)}role—
intersection (CuurentOperation Denedroles)— size=0
Autherize_ Avoding of ({ CanflictingUsers->sealect(User Name=CurrentUser)) —
payment Lonflictmg collect{users)—asSet())— inter section
User ((History Log— select{Action= {(BusinessTask—
select{ Task="Purchasing”).Operation— Prior
(Operation=CurrentOperation))AND
Object= CurrentObject})— collect(ActionUser))— isEmpty
Authorize Operation Histroty Log— select{ Action=(BusinessTask—»
payment Sequence gglect(Task="Purchasing™).Operation—
{Workflew) Prior {Operation=CurrentOperation?) AND
Object=CurrentObject)— notEmpty

One of the main issucs to be addressed by security constraints is their placement in the
UML models and the metamodel. If all constraints are imposed on one object, then that
object cncompasses all access control specifications. While centralizing the design at the
Meta level, this option has the advantage of having a clean separation of security policy
from the rest of the design. This facilitates applying different security policies to the same

design.

Converscly, each object or combination of objects can be decorated with corresponding
security policy constraints. While not giving rise to difficulties in binding objects to their

constraints and encapsulating policies within objects, this approach presents a security

36

nightmare. That is, it scatters the security policies governing a piece of software
throughout its design diagrams. There is also the danger of confusing the differcnce
between security constraints from other typces of constraints such as performance and
design integrity. However, separating each object with its security policy constraints in
different objects, such as SPCs, can solve the latter problem of mixing security policies
with other types of policies, but it does not solve the problem of scattering security

policies all over the design.

4.2.2 History Logs

In order to cnforce history based and dynamic access control policies I introduce the
history log. It maintains method and task execution historics. It was referred to as Aistory
based controls by Simon and Zurko [SZ97]. The history log also facilitates auditing — an
important aspect in cnforcing security specifications according to Sandhu et al. [SS94].
The history log can also be maintained centrally or distributed. Maintaining centralized
history logs can detect inter-object conflicts, although it may become a performance

bottleneck for larger designs.

4.2.3 Business Tasks

In the business world task may consist of more than one operation. For example, the
purchasing task in Figure 4.2 consists of three operations: record invoice arrival, verify
invoice validity and authorize payment. Because many duties, in the sense of separation

of duty principles, are formulated in terms of business tasks, I model business tasks as

37

first class objects. Specifying operations as a part of a business task means that no user
can perform all the operations of a single business task on a single object that leads to

fraud and errors.

onflicting User Conflicting Rtﬂg l__Q:nﬂnglmg Oggrgtign_l
F

[User

Cbject

constraint inessTask|

Figure 4.4, SPC Interactions with Other Elements

4.2.4 Conflicts

Some operations conflict with others. For cxample, a single user should not perform the
writing a check operation and the signing a check operation. In addition, conflicts may
occur between roles, e.g., the purchasmg officer role and the accounts payable manager
role. Conflict may also take place between users, e.g., relatives should not execute
complementary critical tasks. For that reason, 1 introduce three conflict associations:

conflicting user, conflicting roles and conflic ting operations.

4.2.5 Interactions between SPCs, History Logs and Business Tasks

Figure 4.4 demonstrates how the SPC interacts with other elements of the metamodel in

order to validate access control policies. The SPC is the corner stone of my model that

38

intercepts each method’s call and validates the permission of the caller. The SPC decides
according to the set of all authorization constraints related to the called operation. These
constraints rely on some data contained in other objects. Objects can be one of the
following: First, History Log contains a log of all users’ actions. Sccond, Business Task
contains all required operations for a particular task. This information can be used to
prevent a user from executing all operations of a single task that may lead to fraud and
errors. Third, conflicting sets of (roles, uscrs, and operations) are uscd as a knowledge
base by the SPC to prevent conflicts. Fourth, users and objects can be consulted to

provide identity and other attribute values that are helpful to validate constraints.

4.2.6 Enforcing Access Control Constraints

In order to cnforce security constraints, I assume that every system designed with this
metamodel has a reference monitor. The reference monitor ensures that its execution does
not violate security related constraints, and filters every method call. In order for this to
be effective, I assume that all attributes are encapsulated inside their classes and cannot
be accessed other than by calling those operations. This approach is similar to the
reference monitor Sandhu et al. [S594]. A reference monitor may not necessarily have to
be implemented as a centralized entity as such a design may introduce vulnerabilities.
However, it can be modeled and implemented in a decentralized manner to suit new
decentralized computing paradigms. Scction 4.4.3 provides an example of how to model

the extension in a decentralized way.

39

4.3 Applying the New Extension to the Running Example

This section shows how the new metamodel can be applied to the running example
described in Section 4.1. Here, T demonstrate that Use Cases result in flow constraints.
The following are some sample sccurity related requirements and their translations as

OCI. constraints:

1. Required sequence of operations (Workflow policies): Enforcing this policy
requires writing constraints in the SPC and consulting the History Log and the
Business_Task for previous actions. The business task is consulted to get the
sequence of operations in a single task, and the History_Log is used to validate
the occurrence of previous operations. For example, this policy is enforced on the
Authorize Payment use case by the following preconditions written in OCL:

Context Invoice: Authorize Payment():Void (1)
Pre: History Log— select(Action=(Business Task—

select(Task="Purchasing”).Operation—
Prior (Operation=CurrentOperation)) AND
Object=CurrentObject)— notEmpty

2. Role constraints: Allow only permissible roles and restrict unauthorized roles.
Suppose that the supervisor role is prohibited from executing the verify invoice
validity operation. This constraint can be directly specified in OCL as follows:

verify invoice validity AllowedRoles={PurchasingOfficer} (2)
verify_invoice validity DeniedRoles={Supervisor}

40

However, to express it as a precondition in the SPC, I write it as follows:

Context Invoice:verify invoice validity (..):Void (3)
Pre:(User—select(user=CurrentUser))role—
intersection(CurrentOperation.Allowedroles)—size>0
AND(User—select(user=CurrentUser)).role—

intersection{CuurentOperation Deniedroles)—size=0

These are written as general constraints that can enforce the Role Restriction
policies. They consist of two expressions. The first expression intersects two scts:
the current uscr’ roles and the current operation’s allowed roles (i.e., the Verify
invoice validity operation). If the result set is not empty then the user is allowed to
perform the operation and otherwise disallowed. The second expression ensures
that nonc of the user’s roles are in the current operation’s denied roles. For
example, a user playing the Supervisor role cannot perform the verify invoice

validity operation, because it is in the operation’s denied rolcs.

3. Dynamic separation of duty: According to the original specification, recording the
arrival of the invoice and the authorization of the payment has to be performed by
two different subjects. This DSOD requirement can be satisfied by enforcing the
following precondition on the authorize payment method.

Context Invoice: Authorize Payment():Void (4)
Pre: History Log— select(ActionUser= CurrentUser
AND action="record invoice arrival” AND Object=
CurrentObject)—isEmpty

41

This constraint ensures that therc should not be any record in the History Log that
shows that the current user has executed the Record invoice arrival operation on
the currcnt invoice. Note that there 15 no similar constraint on the Authorize
payment operation because the Supervisor role is not allowed to perform the
Verify invoice validity operation. Also, note that I am using users and not roles to
specify this constraint, because users allow me to impose finer constraints than

roles in this context where a role consists of a set of users.

4. Conflict avoiding policies. The conflict association in each User, Operation, or Role
is used to enforce this kind of policy. For example, the following constraints ensure
that the current uscr is not in conflict with the user who performed the previous
operation of the task:

Context Invoice: Authorize Payment():Void (5)
Pre:((ConflictingUsers—select{ UserName=CurrentUser))—
collect(users)—asSet())—intersection((History Log— select
{ Action= (Business Task—
select(Task="Purchasing”).Operation—

Prior(Operation=CurrentOperation))AND
Object= CurrentObject))— collect{ActionUser))— isEmpty

42

r -~
LE ehaing Officer spC sﬁ,gmjl;mm s L o lon ’E no Tos| | bnigice
_l I
! Authotize Payment Request
Get User's R e
Usars Roles
(__777‘.,.._ -—-—
Gat Livowes s Allewe-1Roks and Dean edRoles
R S
: Ir vouce s AllowedRoles and DenwaRules
MU
et User's Conflict
User Co
b - mm mmmeme-- i
st Iha Prevoms Operabun jn the Task
Prevous Operation in the Task
e m e mmmm -- .
el Previous Operation s Record
Rason
Q_ ________ —mm e emmamma- _— -———
Ferformn Authonze Paymant Cperabion
b D
Deny Reguest {CR}
SR N
Recnrd Action 1o Log
| | -

Figure 4.5. Sequence Diagram for the Authorize Payment Use Case

Figure 4.5 shows the sequence diagram of the authorize payment use case. It is an
example of how the SPC interacts with other objects to validate the call to Authorize
Payment operation. As stated, cvery method call in Figure 4.5 is redirected to the
reference monitor - the SPC. That shows that all security requirements are enforced and
are based on the fact that we can translate all security requirements to constraints on
method calls and, therefore, they can be enforced by filtering method calls at the SPC.
This argument assumes that SPC can be designed to enforce all requircments so

translated.

43

4.4 Case Study of Existing Security Models

In this section, I show how to enforce three examples of security policics taken from the

security literature. The first is RBAC the second is flow control polices by Ferrari et al.

[FSBJ97],; and the third is the distributed authonzation processor by Kraft [Kra02]

4.4.1 Role-based Access Control Metamodel

This section shows how to enforcc RBAC in a real, secure, application design. In order to
cnforce RBAC models, I extend the core of RBAC as suggested in the new metamodel
and shown in Figure 4.6. The dotted lines represent the cxtension of the new metamodel
to model RBAC polices in the UML, while the rest of the diagram represents my
cxtension of the UML. The following section shows RBAC policies and how to model

them using the new metamodel:

* Dynamic separation of duty (DSOD): The business task element holds ali
rclated operations of a single business task and the history log records all previous
actions of all users on all objects. Those two types of information suffice to
enforce DSOD.

= Static separation of duty (SSOD): The constraint associations between the SPC
and other elements such as User, Role and Operation are the required information

for this policy.

44

= Flow control and workflow: The SPC gets the sequence of operations in a
Business Task and query the history log to check whether the previous operation
to the current one is already completed.

» Conflicts in User, Role and Operation: To avoid such conflicts I specify three
distinct associations that are related to Role, User, and Operation.

» Cardinality in Roles and User elements: I have extended Role clement by
adding tagged values: MaxAllowedUsers and MinAllowedUsers, that are used to
limit the number of users in each role. For example, only one user should play the

CEO role and, hence, the MaxAllowedUsers is 1. Note that the same is true with

Users.
Business Task
Inheritance
Conflicting Roles Sef :r"_-‘. - .
H [fi 1 t
Conflicting User Set P Contlicfing Operatjon st | o1 1 ——
A N D S AU, . istory Lo
] ! Rola 7 AllowedRoles L {orderedlogg o 29
User axAliowedUsers T 2=~ Operationt————— L%
. 1 i . . jacton
pMaxAllowedRoles _"_J?e" Assignment \pinafiowedUsers | Eff?'_e_d_R_?l?f___ Logged Actions [0
MinAllowedRoles [~ 777777 -:'T i . 1
Caonstrainted :
Constaifte Conslraint
1 .
Secuirty Policy Constraints 53
Constrainted peration
= IPalicy GeneralCbnstrainis

. [Constraint

- -

related to

Figure 4.6. RBAC Metamodel

45

The extension I did for RBAC introduces two associations: AllowedRoles and
DeniedRoles where the former represents all roles that are allowed to execute an
operation and the later represents all denied roles. Moreover, an operation with no
AllowedRoles association is considered open or closed to all roles according to the access
control meta-policics such as open-policy or closed-policy respectively, unless some

roles are denied in the DeniedRoles association.

4.4.2 Workflow Policies

The extension can be used to specify and enforce workflow and information flow control
policies in object-oriented systems such as the flexible flow control model of Ferrari ct al.

[FSBI97].

The strict policy of [FSBI97] allows writing an object O’ that depends upon the reading
of object O only if all readers of O are a subset or equal to the rcaders of O. But the
approach they presented adds flexibility to this strict policy by introducing two types of

exceptions to methods:

1. Exceptions on releasing information based on return parameters of a method
called reply-waivers.

2. Exceptions for passing information by parameters of a method that are called invoke-
waivers.

The model uses three components when deciding to permit an information flow. They

are:

1. Access Control Lists (ACL) for each object.

46

2. Reply waivers for each operation where each waiver contains the objects and a set of
users who are waived to receive the operation’s returned value.
3. Invoke waivers for each operation where each waiver contains the objects and a set of
users who arc waived to invoke the operation.
The cxample in Figure 4.7 shows a transaction execution tree of method Opl. Each
operation cither reads from object or writes to objcct. Each object has a set of users who
are allowed to access the object. Opl calls Op2 which rcads Objl and Obj2, and after the
completion of Op2, Opl calls Op3 which writes the information read from Op2 to Obj3.
According to strict policy, Op3 cannot write to Obj3 because the information that 1s
needed to be written in Obj3 came from more restrictive Objects than Obj3. For example,
the Obj3’s users set is not a subset or equal to the users of Objl and Obj2. Likewise, Op4
will not execute, because it intends to write information that is read from more protective
object (i.e., Objl). However, [FSBJ97] provides more flexibility than the strict policy. If 1
attach a reply waiver: {({Obj1},{B,C}), ({Obj2},{C})} to Op2 then Op3 can write the
information because this is a safe flow according to the safe flow theorem [FSBJ97].
Also, if I attach a revoke waiver: ({{Obj1},{B}}) to Op4 then Op4 can write to Obj4
freely because now the users who can access Obj4 is a subset or equal to the ACL of

Obj1 and Obj2, plus the invoke-waivers of Op4, e.g., the safe flow theorem.

One important element of the model is the message filter. It is a trusted system
component that intercepts every message exchanged among objects in a transaction to
prevent unsafe flows. The message filter relies on a concept called folder to check each

message exchange.

47

<0p1 }
14
opd\ /op:
¥ -4 Read \Write/,
/Opzl '\E:‘}--/ “.. " 1 Op= Operation
[. Write / 4 \ y Obj= Object
N 5 3 <>= Users who can
5 ! \ 11 access this object
¥ Y 2
Objéa [Objl | Objz |[Ob3
Lc:AIB:- <A> | <A B> <A,B|C>_‘

Figure 4.7, Transactiecn Execution Tree

A many-to-many association between user and operation can represent ACLs. For
example, each object’s operation may have one or many users who are allowed to access
it, and each uscr may be allowed to access one or more of the same object’s operation, as
shown in Figure 4.8. Waivers are new elements attached to each object’s operation in one

end and to the User on the other end.

A folder 1s a set of rccords where each record holds the waivers applicable to the
information flowing. To represent 1t in my model, I use the history log as a representation
of the folder to store the required information. The history log in this model is associated
at one end with operations because each folder’s record should be related to one
operation at one end {i.e., the first execution of the transaction) and to the user at the
other end (i.e., the allowed users of each folder). The folder records consist of a
transaction id, the type of folder (backward or forward), the execution source (i.e., an

operation), the ¢xecution destination (i.e., an opcration), the object’s identification, and

48

the object’s operation, and each rccord is associated with a set of aliowed users. The
message filter intercepts each message to prevent unsafe flows by checking the ACL, the

reply-waivers and the invoke-waivers, or to construct folders.

| ____Folder |
:‘_I'ransaction 1D :
Type : char | e
',Source : Operation || Business Task
. + iDesitenation : Qperation, - .
wawedruiers_ _jOhject : Object | :_ o Conflicting Gperation Set
{ XOperation : Operation) T;ansacliol} Operation . . . ‘
Conflicting User Set , | (mmm e] {orderoy e | FEStoTY Log)
1 ! AllowedUser (ACL) v —_[Operation] " | isﬁ;n
: User \TT- T - =T ===] Logged Actions [ypyeey
fMaxAllowedRole: | | J_R_ _I—V_V;i;e?s_' - *}]
inAllowedRoles [~ b_f’;F":t! _____ 1 | 1
- . lu_'*—{- Cor’st ir?ted Constraint| ~
I e »
v bl nokewaiverst |~
object
= e | [Secuirty Policy Constraints]
- ! [Operation .
Policy GeneralCpnstraints
Consitanied onstraini

“related to*

Figure 4.8. Mctamodel for the Flexible Information Flow Control Model

4.4.3 Representing Distributed Authorization Model

In this section, I show how the new metamodel can be used to model a new proposal of a
Web service’s authorization by Kraft [Kra02]. Web services provide an casy
development, deployment, maintainability and accessibility through the Internet.

However, sccurity must be imposed on Web services to succeed. There are security

49

standards and proposals to achieve better security on Web services and one of them is a

Kraft proposal [Kra02] on the Web service’s authorization.

Kraft [Kra02] introduces a distributed authorization processor architecture that
incorporates basic Web service objects, plus aggregetion, composition, operations and
specialization on Web services, The model designed as a SOAP (Simple Object Access
Protocol) filter gateway that operates as an authorization service for Web services. The
distributed authorization processor is based on two components: a gatekeeper and an
authorization processor. Authorization Processor is a web services that makes
authorization decisions for a Web services component, whereas, a gatekeeper 1s an
authorization processor that has to make thc final decision on granting or denying
requests. Each Web service component may have one or more authorization processor
while it may have at most onc gatekeeper. Also, a gatekecper has the function of
authenticating principles of incoming requests. Another issue is that Web services may
belong to a web services collection; thercfore, in order to access a Web service that is a
member of a collection, the gatekeeper needs to check the Web service’s authorization

processor and the collection’s authorization proccssor to make the authorization decision.

A simple scenario is shown in Figure 4.9 (taken from Kraft [Kra02]). The scenario starts
when a client request a Web service object 3, then the gatekeeper (#1) of the requested
Web service (#3) intercepts the request to determine 1f the client is allowed to access the
required Web service or not. Thus, first, the gatekeeper authenticates the client (I will
ignore authenticating clients to focus on access control only). Second, the gatekeeper

checks every access control processor that is related to the requested Web service (#3,

50

#6) to find out whether the client is allowed. Because the Web service object 3 is a
member of the Web service object 6, the gatckeeper must also check the access control
policy (ACP) (#2) that controls the access to the Web service object 6. If all access
control processors accepted the request, the gatekeepcer routes the request to the requested

Web service otherwise, it rejects the request.

Web service collection

’];s a member of

Figure 4.9. Distributed Access Control Processor Architecture Scenario

The reprcsenting Kraft model [Kra02] is straightforward using the new metamodel.
Before I show how to model it, I assume that, when a client accesses a Web service,
he/she is invoking an operation on that Web service. The authorization processor is a set
of authorization constraints that are related to a specific Web service’s operation.
Therefore, the authorization processor is modeled as an SPC. Furthermore, because

gatekceper is an authorization processor, the gatekeeper is also modeled as an SPC. The

51

SPC is tlexible to accommodate any constraints that belong either to the authorization

processor or the gatcheeper,

Kraft [Kra02] introduces the Web service collection, which contains a number of Web
services. The access rights of any member are based on the union of both the Web
service’s access rights and the collection root’s access rights for the Web service.
Therefore, there should be some sort of representation of the relation between a member
and its root. The new mectamodel provide this representation by the association “related

to” that assoctate Web service’s SPC to its root’s SPC.

4.5 Conclusions

Security needs to be integrated into the software development life cycle, and propagated
throughout 1its various phases [DS00]. Therefore, it is beneficial to have secure
development integrated with industry standard methodologies and notations such as
Rational Unified Process (RUP) [RUP04], Concurrent Object Modeling and Architectural

Design with the UML (COMET) [Gom00] and the UML.

I extended the UML metamodel to specify and enforce access and flow control policies. [
added SPC, business tasks and a history log. Then I showed how security requirements
could be specified and enforced by using new extensions. These requirements are in the
access control, flow control and workflow specifications. Based on an implementation of
the SPC as a reference monitor, I show how to enforce sccurity requirements specified at

the requircments specification stage of the life cycle.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S tosawnd)| aJgoll

Wijesekera, Duminda(Super.) TVICY IUUPY 73

1998 HENVWN PR

x9S ,49 ‘8990

1-155 1olxaall

618333 :MD 3,

&zol> Jlw, ‘Sgizall g9

English :aell

ol,9:8> alw, rauolell a)all

George Mason University 4ol

Volgenau School of Engineering ra sl

a,55,0V| 835wl WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl colowll dwaid Sl (Jaogll coldlnioll :Raolgo
https://search.mandumah.com/Record/618333)

abga=o Jgs=ll gro> .@nglhioll jls 2019 ©
plaziwlW 8l 0is aclb o Jaoz cliSoy .albgazo uiull Dgé> gao ol lole ouiddl Dgé> olesl go &dgall Syl (sle slo ax>lio dslall 0in
s ol il Boas> Llsl o a2y Ugs (wsuguSIVI ! of oLVl g8lge Jie) @liws Sl pe il of Jugmdl of Fuwill giouy dnad suazedil
.aoghioll

www.manharaa.com

https://search.mandumah.com/Record/618333

Chapter 5

EXTENDING THE USE CASE MODEL

In this chapter, I show how to extend the use case model in a three ways: 1) I present the
access control schemas that unify the specification of the access control policies in the
use case, 2) I present the access control table that visualizes the access control policies
and helps in applying inconsistency and conflict resolution for small scale software

systems, 3) I extend the use case diagram to show accurate access control policies.

5.1 Introduction

In the UML, requircments are specified with use cases at the beginning of the life cycle.
Use cases specify actors and their intended usage of the envisioned system. Such usage -
usually, but not always - is specified in terms of the interactions between the actors and
the system, thereby specifying the behavioral requircments of the proposed software.
Fowler and Scott say that @ use case is a set of scenarios tied together by a common user
goal [FS99]. Use cases arc written in an informal natural language. Thus, different people
may write varying degrees of details for the same use¢ case. Currently, a use case is a
textual description with: 1) actors and/or their roles; 2) preconditions and post conditions,

3) mormal scenarios with sequence of actions by the actors and/or the system; 4)

52

53

abnormal or exceptional scenarios. In contrast, a use case diagram visualizes actors and
their relationships with scenarios [JCJO92, BR19Y| As I shall demonstrate during the
course of this chapter, usc cases are not sufficient to model the details of access control
policies. Consequently, I cnhanced the use cases model by adding something analogous

to (soon to be discussed) operation schemas.

Operation schemas, introduced by Sendall and Strohmeier [SS00], enrich use cases by
introducing conceptual operations and specifying their properties using OCL syntax
[WK99]. The operation schema can be directly mapped to collaboration diagrams that are

used later in the analysis and design phases.

Although operation schemas are precisc, they do not specify system security. Therefore, 1
extended the operation schemas to cover access control, and I refer to the extended
schemas as the access control schema. Introducing an access control schema as a
separatc syntactic entity has several advantages. First, it isolates access control policies
from other functional requirements that are usually elaborated in operation schemas.
Second, this separation facilitatcs several access control policies to one use case, thereby

modularizing the design.

There is a need for ncgative authorization as there is a need for positive authorization. In
particular, with the presence of subject hierarchy, the nced for explicit negative
authorization is greater because subjects do not have explicit authorizations only, but also
may have implicit authorizations from the inheritance of the junior subject’s permissions.

Therefore, negative authorizations are used to block some positive authorizations that

54

have been granted to subject. With the introduction of a negative authorization, there 1s

also a need to manage any conflict between anthorizations (positive and negative),

Sometimes us¢ cases over-specify or under-specify authorizations, leading to
inconsistency and incompleteness, respectively. In order to avoid both extremes, security
literatures use conflict resolution and decision meta-policies. I applied the two policies to
the use cases. In addition, adhering to the visual specification tradition of the UML, 1
attached access control tables to visualize the process of applying meta-policics in

conflict resclution.

Based on resolved complete and consistent policics, I constructed refined use case
diagramns that illustrate access control policies visually. I developed a methodology with
the following steps: 1) writing the access control policy schema, 2) developing an access
control table and applying propagation, conflict resolution, and decision policies on all
use cases, 3) propagating authorizations to operations, 4) resolving conflicts in the access

control table for operations; and 5) drawing the refined use case diagram.

This chapter does not show how to model or implcment the access control policies as
FAF [JSS8501], Author-X {BBC+00] or PERMIS [C002] does, but it rather addresses the
representation and management of access control policies at the early phases of the
software development life cycle - thereby focusing on how to represent and produce
conflict-free and complete authorizations. The output of this work can be used later to

feed other access control mechanisms such as FAF, Author-X or PERMIS.

55

The remainder of this chapter is organized as follows. Section 5.2 ¢xplains an example
that will be used throughout the chapter. Section 5.3 describes the steps of specifying the

access control policies with the use case.

/fPurchasing Payment \

0| /“Record invoice™,
Clerk S arrival .~

o ~ Verify invoice ™.
M- R idi
. validity -
Purchasing Officg e =T

b |

- |~ Authorize
=r - payment _~
Supenvisor I
Ft

o o
+— (\\f\lntmg a checlf/ J

Clerk \ - /

Figure 5.1. The Use Case Diagram

"
A |

PurchasiEOfﬂcer

Supervisor

Figure 5.2. The Role Hierarchy

56

5.2 Running Example

The running example describes a purchasing process where a set of tasks assigned to
authorized roles as shown in Figure 5.1. Role-Based Access Control (RBAC) [SCFY96]
1s the access control model for this example. The set of access control policies applicable

to this example arc as follows:

1. Usc cases such as record invoice arrival, verify invoice validity, authorize
payment and write a check are to be applied in the specified order.
2. Each use case should be executed by an actor playing an authorized role(s) as shown

in Figure 5.1. For examplc, the write a check usc case should be invoked by

(authorized to) clerk role. In addition, the role hierarchy implicitly authorizes a

specialized role to inherit permissions. For example, according to Figure 5.2, the

supervisor role inherits the purchasing officer’s permissions and the purchasing
officer inherits the clerk’s permissions.

3. Supervisor cannot execute the write a check use case.

4. No user should perform more than one use case on each object. This is a one type of
Dynamic Separation of Duty (DSOD) policy. For example, a user should not record
and verify the same invoice. This policy is claimed to prevent fraud and errors
[CWET].

5. Ifthe invoice’s total amount exceeds one million, then two different supervisors must

authorize the invoice.

57

5.3 Formal Steps for Specifying Access Control Policies

5.3.1 Writing Access Control Schema

Operation schemas do not cover access control policies. Therefore, I introduce the access

controf schema to specify them,

Figure 5.3 and Figure 5.4 show the standard format and an example of the access control
schema, respectively. As shown in Figure 5.3, an access control schema has: 1) Use casc
name, 2) Object, 3) Description, 4) Declarations, 5) Users and roles that are either
authorized or denied to invoke a use case, and 6) Pre and post conditions of the schema.
Figure 5.4 refers to the authorize a payment use case of Figure 5.1. The pre-condition of
the schema in Figure 5.4, has four constraints: 1) the invoice is already verified; 2) if the
invoice’s total amount is less or equal to one million, then the invoice must not be
authorized yet, 3) if the invoice’s total amount exceeds onc million, then either the
invoice is not yet partially authorized or partially, but not fully, authorized, and 4) the
current user did not participate in any prerequisitc operation on the same invoice.
Conversely, the postcondition ensures the correctness of operations with respect to the

access control constraints.

Use Case: the use case name.

Object: the object of the use case.

Description: short textual description of the action.

Declares: constants, variables, objects and data types used in the pre and post
conditions.

Authorized (user, group, and role): a list of users, groups or roles that are
authorized to access this operation on this object.

Denied (user, group, and role): a list of users, groups or roles that are denied to
access to this operation on this object.

Integrity Constraints (Pre): specify ali integrity constraints that must be satisfied
before executing the operation written in OCL.

Integrity Constraints (Post): specify all integrity constraints that must be satisfied

after the operation is executed. It is written in OCL,

Figurc 5.3. Format of Access Control Schemas

58

59

Use Case: Authorize Payment
Object: Invoice
Description: Actor authorizes the payment after it has been verified. If the amount
exceeds one millien dollar then the authorization is partial until a different supervisor
completes it,
Declares:
UserWhoDidPreviousOperations: Set(History Log) == History Log->
select (UUser= CurrentUser AND
(Operation="Record_Invoice_Arrival” OR
Operation="Verify Invoice Validity")AND Object= CurrentObject): -
-it will return a record or more if the current user has done one of the previous use case.
Authorized (User, Group, Role): Supervisor--Role
Denred (User, Group, Role): none
Integrity Constraints (Pre):
Invoice.verified="true”,
Invoice TotalA Amount<=1000000 implies Invoice.authorized=
“false™
InvoiceTotalAmmount>1000000 implies
(Invoice partialAuthorized= “false” OR Invoiceauthorized=
“false”)
UserWhoDidPreviousOperations = isEmpty; - The current user did not do
other operation on the current invoice{Dynamic Separation Of Duty)
Integrity Constraints (Post):
If {invoice.TotalAmount>1000000 AND
invoice partialAuthorized@pre="false”) then -the invoice has not
been partially authorized by different Supervisor before.
InvolcepartialAuthorized="true”,
else
invoiceauthorized= “true™
Endif;

Figure 5.4. The Access Control Schema for the Authorize Payment Use Case

5.3.1.1 Constraints

Authorizations in the form of authorized or denicd clauses in the access control schema

do not capturc all access control constraints. Therefore, there is a need to properly

60

cxpress application constraints such as dynamic separation of duty. Next, I will provide
some access control constraints in commercial systems, and T will consider several
known versions of separation of duty (SOD) policies. I show how to write SOD policies
as an OCL constraint in the integrity constraint clause of the access comtrol schema.
Figure 5.5 illustrates the relationship between objects that are used to specify integrity

constraints.

Object

1 +QOperation
—————— AllowR AllowU ———
| _Role | v Operation] """~ | User _i
: { . DisallowR . » DisallowU . | |
=== — j——— == |
- l * * * * e = !

K‘ Assume /__/

Figure 5.5. The Access Control Model

53.1.2 Static Separation of Duty Principles

Static SOD principles prevent subjects (role or user) from gaining permissions to execute
conflicting operations. There are many kinds of static SOD policies and they are listed

below:

Mutually exclusive roles: A uscr shall not assume two conflicting roles. For example, a

user must not assume both the Purchusimg Officer and the Accounts Payable Manager

61

roles. This policy can be ensured if no uscr 1s enrolled in two mutually exclusive roles,

say Roles and Roleg and can be specified in OCL as follows:

(Role= select(name= “Rolea™)). user->

intersection(Role=2>select{name="Roleg”).user)>size=0

Business Task: A user must not execute a specified business task that comprises a set of
operations. For example, user {/ must not be authorized to perform the Record, Verify

and Authorize use cases on the same object and this can be specificd as follows:

User Allowyg=>

select(Operation=0peration; OR Operation=0peration,) - size<n

Where 12 is the number of operations to perform a critical task.

Mutually exclusive operations: Mutually exclusive operations must not be included in

one role, i.c., writing and signing a check must not be allowed to the Manager role.

Operationas.Allowg=>intersection{Operations Allowg)->»size=0

5.3.1.3 Dynamic Separation of Duty Principles

Dynamic separation of duty (DSOD) allows user to assume two conflicting roles, but not
to usc permissions assigned to both roles on the same object. There are several types of
this policy discussed in [SZ97], of which I will show some. One DSOD constraint is to
restrict the user from performing the Record, Verify and Authorize use cases on the same

object. In order to specify this policy, a history of already granted authorizations must

62

exist. For this purpose, [added a formal syntactic object History Log to maintain a Table

of (user, role, operation, object and time).

Dynamic Separation of Duty: This version says that a user cannot perform more than n

operation on the same object, stated as a precondition of an operation:

History Log-=> select (User= CurrentUser AND
(Operation=0peration, OR Operation=0perations; OR
Operation=0peration,i) AND Object= CurrentObject)—> size<n-1

5.3.14 Other Access Control Constraints

Role prerequisites; A user must be enrolled in a particular role before assuming another
role. This can be stated as a postcondition of thc role assignment where Roleg is the

prerequisite role as follows:

User.Role~> includes(Roles) implies UserRole= includes(Roleg)

Permission Prerequisites: A role must be authorized to execute a particular operation
before granting that role with another operation. This constraint can be specified as a
postcondition of permission assignment where Operationg is the prerequisite permission.
For example, the Supervisor role cannot assume the authorizes a payment role unless this

role already has a permission to read the invoice’s data.

Role.Operation—> includes(Operation,s) implies RoleQperation->
includes(Operationg)

Cardinality Constraints: This constraint specifies a maximum and/or a mmimum

number of operations that can be executed by a user or a role. This policy may be applied

63

to the number of users for each role or to the number of permissions for a specific role.
For example, the Supervisor role must have at most one user. This constraint can be

specificd as follows:

(Role>select{name=RoleName)) User- size <sign> n
where <sign> is one of the following (<,> <=,>= <> =) and n is the limit.
(Role=»select (name=RoleName))Operation-> size <sign> n

where <sign> is one of the following (<,>,<=>= <> =) and n is the limit.

53.2 Developing an Access Control Table and Applying Propagation,

Conflict Resolution and Decision Policies on All Use Cases

Use cascs and their access control schemas may over or under specify authorizations,
thereby resulting in inconsistency or incomplcteness. To analyze access control policies
in the early phases of small-scale software systems, I present the following steps. First,
present the access control of the use cases using the access control table. Second, apply
the propagation policy. Third, apply the conflict resolution policy. Fourth, apply the
decision meta-policy on the access control tables in order to resolve inconsistencies and

incompleteness.

Access control tables show static access control policies rather than dynamic access
control policies because the dynamic policics can be validated only during the execution
time; thus, all that I can do during the analysis phascs regarding the dynamic policies is to

write the policies in unified constraints as I discussed them in Section5.3.1.

64

The access control table is a matrix where the (i)™ entry in the Table is (+) /(x)

symbolizing if role i is permitted/prohibited in invoking use cases j. Table 5.1 shows the

access control table for the use case of the running example.

Table 5.1. Access Control Table of The Running Example.

Record Invoice Verify Invoice Authorize
Role\Use case o Write a Check
Arrival Validity Payment
Clerk v v
Purchasing Officer v v
Supervisor v x

Next, I will show how propagation, conflict resolution decision policies can be applied to

make an access control table complete.

5.3.2.1

Most systems use

Propagation Policies

some kind of hierarchy, e.g., roles, subjects or objects. Hicrarchies

induce inheritance and, if the intended application has some form of applicable

inheritance principles, they can be used to complete the access control table. These

inheritance principles are referred to as propagation principles in the access control

literature [JSSSO1]. Several examples of propagation policies from [JSSS01] are as

follows:

No propagation: Permission shall not propagate throughout the hierarchy.

65

= No overriding: Permissions propagatc through the hierarchy and other
contradicting authorizations. Therefore, if an entity’s authorization is positive and
its ancestor’s authorization is negative, then both authorizations apply to the
entity.

» Most specific overrides: If an cntity has an explicitly granted permission, then
that overrides any inherited permission. However, if the centity does not have an
explicitly authorization, then its immediate ancestor’s authorization will apply to
the entity.

= Path overrides: An entity’s authorization overrides any inherited conflicting
permissions for that node and for all unauthorized sub-nodes on the same path
only.

It is up to the requirement engineer to choose the policy. 1 refer the reader to [JSSS01] for
an example of how each policy 1s applied. Table 5.2 shows the access control table of the
running example after applying the most specific overrides policy where ¥v'v' and
xx denotes derived positive and negative permissions, respectively. For example,
because the Purchasing Officer 1s a specialized role of Clerk, all permissions of the Clerk
role should be propagated to the Purchasing Officer, such as the permission to write a
check. However, if there is an opposite explicit permission for the role that the
authorization will propagate to - such as, the Supervisor role for the write a check use

case - then the propagation policy enforces the most specific permission.

Table 5.2. Access Control Table After Applying Propagation and Decision Policies.

Record Invoice - Verify Invoice - Authorize .
Role \ Use case o Write a Check
Arrival Validity Payment
Clerk v ' v
Purchasing Otficer v v ' v
Supervisor v v v x
5.3.2.2 Conflict Resolution Policies

66

Propagation may gcnerate access control conflicts. Thus, conflict resolution policy

resolves conflicting permissions, of which T will show some variants [JSSS01} as

follows:

= Denials take precedence: When positive and negative permissions are granted,

negatives override positives.

* Permissions take precedence: When positive and negative permissions are

granted, positives override the negatives.

* Nothing takes precedence: When positive and negative authorizations apply for

an object, neithcr positive nor negative apply, leaving the specification

incomplete.

67

Table 5.3. Access Control Table After Applying Propagation and Dccision Policies.

Record Invoice Verify Invoice Authorize .
Role \ Use casc) ‘ . Write a Check
Arrival Validity Payment
Clerk v XXX XXX v
Purchasing Officer v v XxXx v
| Supervisor vV v v X
53.23 Decision Policies

Decision policics complete incomplete authorization. For example, the authorize a
payment use case in Table 5.2 does not have an authorization (positive or negative) for
the Clerk role. Does this mean that the Clerk can or cannot exccute the use case? The

following are some decision policies that can be used to answer this question:

= Closed Policy: Every access is denied, unless there 1s a positive permission.
* Open Policy: Every access is granted, unless there is a negative permission.
The result of applying the closed policies for the running example is shown in Table 5.3

where all undecided permission is marked X x % indicating prohibitions.

5.3.3 Propagating Authorizations to Operations

Previous sections showed how complete and consistent permissions could be assigned for
actors to invoke use cases. This section shows how they can be propagated to abstract
operations used in the access controf schemas. Thus, permission (for subject, opcration)

needs to be derived from those assigned to (actor, use case) pairs. One of the issucs is that

68

an abstract operation may be part of more than one usc case and, therefore, could inherit
multiple permissions per uscr. Therefore, although incompleteness does not arise,
inconsistency may aris¢ due to multiple inheritances of permissions. I illustrate this issue

with the running example. Table 5.4 shows the operations of each use case.

Based on tdentified operations, the access control table specified for actors to use cases
can be used to derive permissions for abstract opcrations. I refer to this Table as the
access control table for operations. Thus, the access control table for operations consists
of permissions of cach operation for every actor. Table 5.5, shows the access control
table of all operations of the usc cases in the running example. Inconsistency may happen
in this stage where an operation may belong to two use cases and an actor may have
inconsistent authorization for the same operation due to authorization inheritance. For
example, the Read operations authorization for the Supervisor role inherits positive
permissions from the Authorize payment use case, and negative permissions from the
Write a check use case. Thus, the Supervisor role has an inconsistent authorization for

that operation.

69

Table 5.4. Identified Operations.

o | Record Invoice
S Verify Invoice Validity Authorize Payment Write a Check
o Arrival
=]
Invoice :: Read Invoice :: Read Invoice :: Read invoice :: Read
z |Invoice :: Record Agreement :: Read Invoice :: Authorize Check 21 Write
Q
g invoice :: Write prices
Q
invoice i: Verify
Table 5.5. Access Control Table for Operations.
Read:. Record: Read:: WritePrice::” Verify:: = Authorize::
Role¥Operation Write ::Check
Invoice Invoice : Agreement Invoice Invoice Invoice
Clerk v v X XX XXX XX X % X v
Purchasing Officer| v v v < v Cxxx s
Supervisor . v v v vy v «

5.3.4 Resolving Operations Authorization Conflicts
Conflict resolution in the access control table for the operations has to consider two
issues:

1. Invalidating Use Case level permissions: Any resclution may result in
invalidating an entry in a complete and consistent access control table for Use

cases. For example, the Supervisor role in the running example has both positive

70

and negative authorization for the Read operation on the /nvoice objects, in Table

5.5. If the conflict resolution policy enforces negative authorizations over the

positive ones, the system ends up preventing the Supervisor role from executing
the Authorize payment use case because one of the required operations is denied.

2. Violating access control constraints: Although, the step in Section 5.3.2 resolves

conflicts, the end result may violate access control policy. For example, the write a

check permission may be granted to the Supervisor role that has an explicit negative

access control policy (according to the access control policy number 3 in Section 5.2).

As a result, required access control constraints are violated. The Access control
schemas must be complete and consistent. Visually, all cells in the access control

table should have one of {v, X} In addition, the following observations help in

resolving conflicts at this level.
First of all, although some access control policics conceptually apply to several roles, in
reality only a fewer roles may violate them (e.g., access control policies should be
enforced on fewer roles). For example, suppose an access control policy states that no
rolc can record, verify and aunthorize the same invoice. According to Table 5.3 only the
supervisor tole can perform all three use cases on the same invoice because the
Supervisor is the only role with positive permissions to execute all three use cases. Thus,
the integrity constraint only applics to the Supervisor role. This example shows how an

access control policy that applies to all roles can result in one role violating it.

71

Second, flow constraints between use cases imply dependencies between conflict
resolution strategies. For example, policy #4 in Section 5.2 states that a role cannot
perform any two use cases on the same invoice. It is not efficient to enforce this integrity
constraint on each use case. However, integrity constraints should be enforced before the
execution of the second and third use case because, in sequential use cascs only at those
use cases, at least one use case would have been executed. Thus, the decisions about
which use case can optimally enforce the integnity constraint of DSOD policies are not
straightforward. The algorithm in Figure 5.6 chooses the optimal use case among those

that have dependencies enforced between them.

Applying a policy on one use casc is trivial task. However, when applying a policy on a
set of use cases, a decision on the details of enforcement is cssential in reducing the
overhead of validating such policies. A set of use cases may depend on each other where

one cannot start until the previous one has completed.

ﬁﬁ% n //Total number of entities that the policy is enforced on.
Int m //Minimum number of entities that must not be invoked by
//the same subject.
Int z //Total number of cther use cases not in the current tree.
Int q //A use case, q:im—zj.
Int i //The level of g. Level: it comprises a set of use cases
JS/that have the same crder in a dependent tree.
//Entity can be use case or operation.
If n=m then
if there are no dependent entities trees then
for each independent entity do
Write the integrity constraint con the entity.
else //there are dependent entities trees
if there is only one dependent entities tree then
write the integrity constraint on the last entity
of this tree.
else //there are more than one dependent entity tree.
for each independent entity do
Write the integrity constraint on that entity.
for each dependent entities tree do
write the integrity constraint on the last
entity of each tree.
End If
End If
else // m<n
if there are nc dependent entities trees then
for each independent entity do
Write the integrity constraint on the entity.
else //there are dependent entities trees
for each independent entity de
Write the integrity constraint on it.
for cach dependent entities tree do
if m £ z then

k=1
else

k=1
End If

write integrity constraints on use cases from the
k™ level to the highest level of the dependent
tree.

End loop

End If

End If

Figure 5.6, An Algorithm for Enforcing Integrity Constraint of DSOD Policies

72

73

Assume there is an access control policy that must be enforced on four use cases. The
policy is to prevent a user from performing any three use cases on the same object. Three
of the use cascs are dependent on cach other sequentially, while the fourth is independent
of the rest. According to the new Algorithm in Figure 5.6, this policy should be enforced
as a prerequisite on the independent use case, while, for the three dependent use cases,
the policy should be enforced on the second and third use cases because a user may
invoke the first, then the indcpendent, then the second use case on the same object that
violates the policy. As an advantage, systems do not have to validate the policy on the
first use case because I am sure that the policy will not be violated and because, after
performing this use case, two more use cases must exccuted due to the dependency on the
first usc case. The Algorithm in Figure 5.6 can also apply to operations, instead of to the

use casc.

53.5 Drawing The Refined Use Case Diagram

Although use casc diagrams visually represent the behavioral requirements of a proposed
software system, they are not sufficient to represent existing access control policies. At
best, the usc case diagram shows some access control by stating the roles that actors are

permitted to invoke.

Thus, having visual representations of access control policies is very much in accordance
with the objectives of the UML. I refined the use cases diagram for this purpose as in
Figure 5.7. The refined use casc diagram represent all possible access control policies

{(positive, negative, explicit, implicit and integrity constraints), which provides clear

74

visual access control policies. The refined the use case diagrams to have many dcsirable

features as follows:

[explicitly associate actors with all use cases that they are authorized (explicitly
or implicitly) to invoke. Thus, the absence of an association between an actor and
a use case 1s read as a prohibition.

The new refined use case diagram adapts a relationship, which is introduced by
the Open Modeling Language (OML), called Precedes [FHG97]. The relationship
1s used to specify dependencies and order of invocation among use cases.

Usc cases diagrams should be enhanced with access control schemas, in order to
specify details of access control policies for both actors to invoke usc cases and
for subjects to invoke abstract operations. Access control schema is represented as
attached constraints to cach use case. Although, this may clutter the diagram,
especially when integrity constraints are complex, it provides useful information

about access control polices.

The access control policies in the running example in Section 5.2 are represented in the

refined diagram as follow:

Policy #1 is represented by Precedes relationship to show the dependence and
flow of use cases.

Policy #2 and #3 are represented by showing all explicit and implicit
authorizations between actors and use cases where the absence of link between
actor and use casc means a negative authorization. Note that the associations of

the original use casc diagram do not represent all possible positive authorizations.

75

The absence of authorizations between actor and use case do not mean negative

authorizations.

» Policy #4 and #5 are shown as constraint notes attached to use cases that are

derived from the integrity constraint clausc of the access control schema.

L
Purchasihg ;
Officer \ |

Supervisor

I enfy invo

/ Purchasing Paymenm

| ~Record invoicé
‘\ arrival

!

Sapa:)eJd _

r:e
vahdrty

A_%'

sapao

Authon
B payment

Writing a check

* [nvoice.recorded="true";
= Invoice.verified="false";
» History_Log select (User= CurrentUser AND
Operation="Record_lnvoice_Asrival” AND Object=
CurrentObject) size<2

Integrity Constraints (Pre):
Invoice.verified="trua":
Invoice. TotalAmount<= 1000000 implies Invoice.authorized=
“false”;

Invoice TotalAmount> | 000000 imphes

{Invoice.partialAuthorized= “false” OR
Invoice.Authorized= “false™)
UserWhaoDidPrevoiusOperations isEmpty; — The current user
did not do other operation on the current invoice(Dynamic
Separation Of Duty}

Integrity Constraints (Post):

If {invoice. TatalAmount>1 000000 AND
invoice.partialAuthorized@pre="false) then —the invoice has
not been partially authorized by different Supervisor before.
Invoice partialAuthorized= wue else
invoice.authorize= "true”; Endif,

» [nvoice.authorized="true”
* Check.writen="false"

Figure 5.7. The Refined Use Case Diagram

76

5.4 Conclusion

I designed artifacts and a methodology to usc them in specifying access control policies
during the requirement specification and analysis phases. My use case extension and
enhancement specifies access control policies in a formal and precise manner, and 1s
capable of deriving access permissions along hierarchies. In addition, I presented meta-
policies, algorithms and methodologies to resolve conflicting permissions before
proceeding to the design phase. I introduced the access control table as visual
representation of access permissions and extend the usc case diagram to completely

specify them.

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Incorporating Access and Flow Control Policies in Requirements Engineering Ulgusll
Al Ghasbar, Khaled. S ool @ioll

Wijesekera, Duminda(Super.) HRVICY IROPS -7

1998 oS>Maodl gy,

a9 oS ,49 ‘8990

1-155 1olxaall

618333 :MD 3,

&0l Jilw, ' Sgizeol| g9

English azll

ol)e:Ss allw, rauodell a>)all

George Mason University 1ol

Volgenau School of Engineering adsll

&,S5,0V bzl LVl :égoll

Dissertations 10logleoll aclgd

Olzeo,dl colowl=l dwaid pS=dl (Jaogll coldlasoll :&aolg0
https://search.mandumah.com/Record/618333 ol

abge=o Jga=ll guo> .anglaioll Hl> 2019 ©
plaziwlW 8sloll 0is aclb ol Jrozs liSoy .albgazo suinill Dgé> gao ol lale il Ygé> olesl go &9gall SVl e clo d>lio 85lodl 0in
Ol ol il Boas> Lol Go whas auyai s (wigyiSIVI a,ul ol wuiyoVl gdlge Jio) @liwg Si e il of Jugmedl of guwill gioug haid suazedl
.aoghioll

www.manharaa.com

https://search.mandumah.com/Record/618333

Chapter 6

AUTHUML

The previous chapter extended the use case meodel to specify access control policies.
Also, it presented a methodology to analyze access control requirements for small scale
software systems. In this chapter, I present AuthUML, a framework to formally verify the
compliance of access control requircments with the access control policies during the
specification phase of UML based software lifecycle. AuthUML differentiates from the
methodology in the previous chapters by focusing on large-scale software systems.
AuthUML concentrates more on the verifying rather than representation of access control
policies. AuthUML is based on Prolog stratificd logic programming rules. Thus, tools can

be implemented to automate the verifications of requirements for large software systems.

AuthUML is based on FAF [JSSS01] of Jajodia et al., and is an attempt to advance its
application to the requirements specification phase of the software development hife
cycle. Therefore, AuthUML is a customized version of FAF that is to be used in
requirements engineering. Therefore, AuthUML uses similar components of FAF with
some modification in the language and the process to suit the Use Case model used in
UML. Because FAF specifies authorization modules in computing systems, FAF is

invoked per each authorization request. Contrastingly, AuthUML is to be used by

77

78

requirements engineers to avoid conflicts and incomplcteness of acccsses. Therefore,
while FAF is used frequently to process each access control request during execution,
AuthUML is to be used less frequently during the requirements engineering phase to

analyze the access control requirements.

AuthUML uses Prolog style stratificd logic programming rules to specify policics that
cnsure desirable properties of requirements. Because requirements are specified using
actors invoking Use Cases, AuthUML uses predicates to specify which actors (subjects)
arc permitted or prohibited from invoking any given Usc Case. Moreover, it uses rules to

specify the policies that need to be enforced on the system.

The remainder of this chapter is organized as follows. Scction 6.1 presents the process of
applying AuthUML. Section 6.2 describes the syntax and semantics of AuthUML.
Scction 6.3, 1.4 and 1.5 describe the first, second and third major phases of AuthUML

respectively.

6.1 AuthUML Process

AuthUML consists of three main phases where each consists of several steps. As shown
in Figure 6.1, AuthUML takes authorizations from requirements specifications and then

analyzes them to produce complete, consistent and conflict-free authorizations.

The first phase starts with a set of access conirol requirements, where they arc
transformed into a unified representation in the form of access predicates. Also, the first

phase ensurcs that all specified accesses are consistent and conflict-free. The second

79

phase ensures that all accesses specified for Use Cases are consistent, complete and
conflict-free, without considering the operations used to describe their functionality.
During the third phase, AuthUML analyzes the access control requirements on
operations. All three phases consists of rules that are customizable to reflect policies used

by the security requirements engineers.

From the access control requirements that are provided in the form of AuthUML
predicates, the second phase propagates accesses based on subject and/or object
hierarchies. Any inconsistencics that may occur due to such propagated accesses are
resolved using conflict resolution rules. After this, all accesses that are explicit (i.e., given
directly in requirement) or implicit (derived) arc consistent, but may not be complete, i.e.,
not all accesses for all subjects and Use Cases may be specified. Therefore, using
predefined rules and policies (i.e., closed or open policies) in the next step (5 in Figure
6.1) completes them. Therefore, accesses specificd before step 6 are directly obtained
from requirements, propagated due to hierarchy or consequences of applying decision
policies. Thus, it 1s necessary to validate the consistency of the finalized accesses against
the original requirements and to check for conflicts between them. If AuthUML finds any
inconsistency or conflict among accesses at this step, it will notify the requirement

engineer in order to fix it and run the analysis again.

Authorizabon Regw ments conlun
-Use Case Qperanon Obje Re alons
- Subject Herarchy

- Conflict Sets

- Accepted corflcts

- Subject Authonzation

80

(Phase 1) On use case level On operation level | Caomecting the
(Phase 2) {Phase 3) Authorization
Requirements
']
I i
|
— .
Fevmarg he
-1 Acreancabon
Reauremants / -
i / Fixing
] \ Authorization
Requi t
/Renresanﬂng \ pquiremen
Austhorization

A RequinienIS/’

SRR
rE/n’suring consistent
| and

(H

[A,
C
h

Propagatian

Inconsistency
Resolution

g

alidating Cansistency
(between AR and the
Finalized Authorization
e

Decision
making

Propagate the
Authorizalion on

Use Case to
Operations

inconsistercy
Resolution

authorizalions

/Ensuring conflicl.
\ frae 7 —

Figure 6.1. AuthUML Architecture

81

The third phasc) of AuthUML applies the samc process to operations used to describe Use
Cases. This phase does not have a dectsion step, as in the second phase, because each Use
Case propagates its accesses to all its operations. As a result, accesses specified during
this phase are complete. In addition, access specifications of operations at the cnd of this
phase are consistent because the inconsistency resolution step in the operation level will
attempt and resolve all inconsistencies. However, if it cannot do so, the process will stop
and notify the requircment engineer about the inconsistency to be fixed by manual
intervention. Up to this step, accesses are consistent and complete, but may not be free of
application specific conflict. Thus, the purpose of the last step of this phase is to detect

those conflicts.

There is a difference between the access specifications fed into AuthUML and those that
come out of it, i.e., finalized access specifications are consistent, complete and free of
application speeific conflicts. This outcome is the main advantage of my work. Thus,
AuthUML focuses on access control requirements as early as possible to avoid any
foreseeable problems before proceeding to other phases of the development life cycle. As
the development process proceeds through its life cycle, changes of the access control
requirement may occur. For example, the Use Cases may be changed to invoke different
operations, or refined/new operations may be added. Consequently, already accepted
accesses may need to be reanalyzed. Therefore, it is necessary to go back and run the

AuthUML again to preserve the consistency, and to ¢nsure complete and conflict-free

82

accesses. Thus, my framework is flexible enough that it allows changes in the access

control specifications.

The architecturc of AuthUML differs from the architecture of FAF in two aspects. First,
AuthUML analyzes accesses in two levels, Use Cases and operations in order to
scrutinize accesses in course-grain and fine-grain levels, respectively, Second, steps 2, 6
and 9 are introduced in AuthUML to detect inconsistencies and conflicts between
diffcrent levels of accesses that arc absent in FAF. Moreover, AuthUML receives a bulk
of access control requirements but not just one access request at a time. Thus, as [will
show later, AuthUML produces accesses only if there are sufficient rules to resolve all

application level conflicts.

6.2 AuthUML Syntax and Semantics

6.2.1 Individuals and Terms of AuthUML

The individuals of AuthUML are the Use Cases, operations, objects and subjects. Use
Cases specify actors and their intended usage of the envisioned system. Such usage -
usually, but not always - is specified in terms of the intcractions between the actors and
the system, thereby specifying the behavioral requirements of the proposed software.
Each Usec Case consists of a set of operations that are used to describe the Use Casc. Each
operation operates on an object, and operations are the only way to query or manipulate
objects. Subjects are permitted to invoke a set of Use Cases and thereby all operations

describing that Use Cases. I use subjccts as actors in UML or role in Role-based Access

83

control (RBAC) [SCFY96, SS00]. 1T denote UC. oP. OBJ, and S as set of Use Cases,
operations, objects and subjects respectively. An access permission can be permitted or
prohibited, that is, modeled as a positive or a negative action, respectively. AuthUML
syntax is built from constants and variables that belong to four individual sorts. Namely,
signed Use Cases, signed operations, (unsigned) objects and (unsigned} subjects. They

are rcepresented respectively as tue, +op, 0bj, and 8, where variables are represented a8

iXuc, i X0p1 Xobj, and Xs.

6.2.2 Predicates of AuthUML

I use FAF predicates with some customizations and some new predicates to model

requirements as follows:

Following predicates are used to model structural relationships and called rel-

predicates.

1. A binary predicate UC_OP(Xuc,Xop) means operation Xop is invoked in Use
Case Xuc.

2. A binary predicatc OP_OBJ(Xop,Xcbj) means operation Xop belongs to object
Xoby.

3. A binary predicate before(Xop,X’op) means that Xop must be invoked before
X’op.

4. A ternary predicate inUChefore(Xuc,Xop,X op) means Usc Case Xuc invokes

Xop before X’ op.

84

Following predicates are used to model hierarchies and called hie-predicates.

1. A binary predicate in(Xs,X’s), means Xs is below X’s in the subject hierarchy.

2. A binary predicate dirin(Xs,X’s) mean Xs is directly below X’s in the subject
hierarchy.

Following predicates are used to model conflicts and called con- predicates.

1. A binary predicate conflictingSubject{X.X) means subject X and X, arc in
conflict with each other.

2. A binary predicate conflictingSubjecteanten:(XX'sY) means that both subject X,
and X's must not invoke Y, where Y can be a use casc or an operation. This
predicates is more specific to stating the conflict for a particular content, ¢.g., the
opcerations.

3. A binary predicate conflictingUC(X .. X'..) means that Use Cases X, and X', are
in conflict with cach other.

4. A binary predicate conflictingOP(X,,X',,) means operations X,, and X, are in
conflict with each other.

5. A ternary predicate ignore(XY.Y') represents an explicit instruction by the
requirements engincer to ignore a conflict among XY and Y where X Y and
Y’ are cither subjects, operations or Use Cases.

The following predicates are used in the first phase of AuthUML to authorize, detect

assignment conflict or detect inconsistency in the access control requirements:

1. opMConUC{X,,X,oX'y), Means X, is an operation in two conflicting Use Cases

Xy and X, and conOplnUC(X.pX.pXu) means that X, and X, are two

conflicting operations in Us¢ Case X, and flowConInUC(XyeXosX'op) Means that
Xop and X'op are invoked in a way that violate execution order.

A binary predict candoy, where candoye (X,+X,,.) means subject X, can or cannot
invokc the Use Casc X, depending on the sign of X, positive (+) or
nagative(—).

A binary predicate alertReq(X.X,.) to inform the requirements engineer that there
is either an inconsistency (between access control requirements) or a conflict

(between subjects or Use Cases) on the access of X, on X,

85

Following predicates are used in the second phase of AuthUML to authorize, detect

conflicts and inconsistencies at the Use Case level:

1.

A ternary predicate overUC(X,X+X,.) meaning X,s permission to invoke +X,.
overrides that of X..

A binary predicate dercandoy, with the same argument as candoyc.
dercandopc{X.+X,.) 18 a permission derived using modus ponens and stratified
ncgation [ABWS8S].

A binary predicate doye, where doya(X.2X,.) is the final permission/prohibition for
subject X, to invoke Use Case X, depending on if the sign of X, is + or —.

A binary predicate alertyc(¥X,X..) to inform the requirements engineer that there 1s
cither an inconsistency (between the access control requircment and the final
outcome of this phase) or conflict (between subjects or use cases) on the accesses

that involve X, and X .

86

Following predicates are used in the third phase of AuthUML to authorize, detect

conflicts and inconsistencies at the operation level:

1. A binary predicate dercandog{¥+X,,) 15 similar to dercandoy; except the second
argument 1s an operation instead of a Use Cases.

2. A binary predicate dogp(X.+X.p) 15 similar to doyg , but the second argument is an
operation.

3. cannotReslove(3 X, X uw.X,) is a 4-ary predicate represcnting an inconsistency
that can not be resolved at the operation level with the given rules.

4. A binary predicate alertop(X.X,,) informs the requirements engineer that there
is a conflict between subjects or operations on the authorization that involve X,
and X,,.

Assumptions

® The subject | used refers to a role (as in RBAC) or an actor (in UML) and not to
an end user of a software system. The rol¢ is a named set of permissions and users
may assume a role in order to obtain all of its permissions.

*» Evecry Use Case must have at least one operation (i.¢., vxeUC 3ye0P UC_OP(xy))

and every operation must belong to one and only one object (i.e., vx=OP 3ycOBJ
QP _OBJ{(x¥y)).

» Each positive access of a Use Case to a subject means that all operations of that
use case arc also positively authorized to the same subject. This is consistent with
[Sen02]. Conversely, a prohibited Use Case to a subject must have at least one

prohibited operation to that subject.

87

As already stated, cando represents an access permission obtained from requirements and
dercando represcnts an access derived using (to be described shortly) rules. Both cando
and dercando do not represent a final decision, but only an intermediate result. For
example, although candoye(X+X..) is obtained from requirements docs not mean that
subject Xs will be allowed to finally exceute Use Case X,. The reason being that
propagation, conflict resolution and decision policies may change the authorization
cxpressed in candop(Xa+Xu.). However, dope(X.+X,.) If derived represents the final

authorization decision.

6.2.3 Rule of AuthUML

An AuthUML rule is of the form L « 1., .L, where L is a positive literal and 1.,, .L,, are

literals satisfying the conditions stated in Table 4.1.

An Example:

candouc(supervisor, +*authorize payimnent™ <« (1)
dercandoyc(Xe+Xue) « candoyc(Xs+Xueoh IN(X X :) (2)
doro(Xe+Xue) « candoyc(Xe+Xue), candove(Xeo—Xuo) 3)

Rule I says that supervisor can access Use Case “authorize payment.”” Rule 2 specifies
the inheritance of authorizations in the subject hierarchy. Rule 3 expresses the

permissions take precedence policy of resolving conflicts.

Table 6.1. Rules Defining Predicate

Stra-
Phase Predicate Rules defining the predicate
tum
rel-predicates base rclations.
0 hic-predicates base rclations.

con-predicates

ignore(X,Y,Y")

base relations.

- Explicit instructions to ignore the XY conflict.

- body may contain hie, ignore, rel predicates.

body may contain hic-, con- and rel-predicates

body may contain literal from strata 0 10 2

body may cantain hiterals from strata O to 3
body may contain predicates from strata O to 4
Qs.urrences of dercandoye must be posiiive,
body may contain predicates from strata 0 to §
body contains one hteral —doyce{h . + o)

body may contain hteral from strata ¢ to 7

% oplnConUC(Xep X, X ue)
L
o 1 conOpInUC(Xep, X op, Xuic)
flowConlnUC{ Xue, Xop, X op)
2 «an douc{xs,i—xuc) .
3 Jl‘-'TtR'.:q(Xs-.Xuc)
4 overpel ™y, N EN)
< dercando (N %)
o s
2) .
% 6 doye(X, Xy
7 dOUC(No- \.A)
8 alertUC (N, Xy,)
0 dercandogp(Xt Aqp)
r; 10 d(NlE‘[\a+Xap)
.E 11 does N - X
12 cannotRestorels, X, N\ e Xop !

13 alertOP(N, Xop)

body may contain preaicates from strata O to 7.

Occurrences of dercandogp must be positive

- body mav contain predicates from strata 0 to 9

body contains vne hiteral —dogel X, + %)
body may contain hicral fraom strata G to 11

body may comain {tteral from strata O to 11

6.2.4 AuthUML Semantics

88

Table 4.1 shows the stratification of rules used in AuthUML. Rules constructed according

to these specifications forms a local stratification. Accordingly, any such rule based form

RO

has unique stable model and that stable model is also a well-founded model, ala Gelfond
and Lifschitz [GL88]. As donc in FAF, I can materialize AuthUML rules also, thereby

making the AuthUML inference engine efficient.

6.3 Phase I: Analyzing Information in Requirements Documents

This section goes though steps | and 2 of AuthUML and shows how the AuthUML

processes the access control requirements.

6.3.1 Representing Authorizations

Following [JSS801], T assume that requirement engineers already specify access control
requirements and that it is not in the scope of this chapter to go further on that subject.

Authorization requirements consist of:

1. Permissions for the subjcct to invoke the Use Cases

2. The Subject hierarchy.

3. Structural relationships (Use Case - Operation - Object Relations).

4. Conflicting subjects, Use Cases and operations sets.

5. Conflicts of interest.
All of the above must be written in this step in the form of AuthUML rules in order to be
used during subsequent steps. They are represented as follow:
1. At this step, access permissions are written in the form of cando,, rules

representing explicit authorization obtained from the requirement specification.

Rule 4 and 5 are examples:

90

candoyc(clerk, +recordinvoice Arrival e (4)

candoyc(supervisor, — writeCheck) « (5)

Rule (4) permits the clerk to invoke the “recordinveiceArrival” Use Case.

Rule (5) prohibits the supervisor fo invoke the “writeCheck” Use Case.

2. Subject hierarchy is represented using the in predicate to indicate which subject

inherits what. For cxample, in(purchasingOfficerclerk) means that the purchasing
officer is a specialized subject of clerk that inherits all its permissions.

Structural relationships represent the relations between use case and its
opcrations, operations and its object, and the flow between operations in a use
case. UC_OP(X,.X.,) says that X, is an opcrations invoked in the Use Case X,..
OP_OBJ(X,»Xay) says that operation X, belongs to object X, In addition,
before(X,X'p) means that X, must be executed before x, is executed
and inUCbefore(X . X.nXop) means that Use Case X, calls for executing X,
before x,.

Application definable conflicts occurring among subject, Use Case and operations
arc represented respectively by coflictingSubjects(X, X)), conflictingyg(Xue X) and
coflictingop(KopX op)-

Requirement engineers may decide to accept some contlicts as in [GH91, GHS2,
NEO1]. AuthUML uses ignore(X.Y.Y") to accept a conflict between Y and Y.
The main goal of the ignore predicate is to only allow specified conflicts, but not

others between access.

91

6.3.2 Ensuring Consistent And Conflict-Free Access Control

Specifications

Access control requirements may specify inconsistencies where one requirement permits
and another requirement denies the same permission. In addition, two conflicting subjects
may be permitted to invoke the same Use Case or operation, or a subject may be
permitted to invoke two conthcting Use Cases or operations. Latter kinds of permissions

may violate the Separation of Duty principle [CW87].

In small systems, discovering conflicts can be easy, because of the small number of
entities and cngineers writing those requirements. However, detecting conflicts and
inconsistencies between access control requirements in large system is more problematic.
Therefore, AuthUML can specify rules that detect inconsistencies between the
requircments that are specified by many sccurity engineers, Detecting inconsistencies and
conflicts at this stage prevent them from spreading to the following stages of the life
cycle. This step of AuthUML takes access control requirements in the form of cando rules
and automatically applies inconsistency and conflict detection rules to identify their

existence, as follow:

aleftReq(Xquc)ﬁC a‘ndOUG(XS;"'Xuc), candoyc(Xs—Xuc) (6)

alePtUC(Xquc)*‘“Ca:ndOUC(XSa'*'Xuc)a Ca*ndOUC(Xsﬁ'X‘uc),)
conflictingue{Xue X ue), ﬁignore(XS,Xuc‘}Cuc)

alertye{ X Xue)e—candoyo(Xs+Xue), candoyc(Xs+Xue), (8)
conflictingSubject e XeX's), —ignore(X X X's)

92

OPIHCODUC(Xop,Xuc,X’uc) (_UCuOP(XIJG»XOp)3 UC_OP(X,chop)a ©)
COHﬂiCtiIlch(Xuc,X’uc), _lj.gnore(XOp,Xuc,X’uc)

conQOpINUC(Xy, XopX'op) + UC OP(X e, Xop), UC OP(X e, X op), (10
COI’lﬂlCtiIlgop(Xop,X’op),—dgl’lOI’e(UC,XOp,X‘Qp)

flowConINUC(X e XopX'op) « UC OP(X 10 Xop), UC OP(KyeXop), (11
before(Xop,X1op), Xop-’f-’X’Dp, ﬁiIlUCbefOI‘e(XchDp, X1op)

Rule 6 says that, if there are two requirements where one grants and the other denies the
invocation of the same Use Case to the same subject, an alert message will be raised to
the security engineer that identifies those that lead to the inconsistency. Rule 7 says that,
if a subject is permitted to invoke two conflicting Use Cases that are not explicitly
allowed by the ignore predicate, an alert message is 1igecred in order to facilitate
manual intervention. Rule 8 says that, if a Use Case is permitted to be invoked by two
conflicting subjects, a manual intervention need to be sought. Rule 9 and 10 are related
fo the conflicting assignments of operations to Use Cases. Rule 9 detects having
operations in two conflicting Use Cases and rule 10 detects having two conflicting
operations in the same Use Case. Rule 11 says that, if two operations used in one Use
Case violates the order in which they are to be called, the first two conflicts can be

ignored if the requirement engineer explicitly uses the “ignore” predicate.

Notice that detectable conflicts that appear at this step are structural in nature. That is,
they are conflicts or inconsistencies independent of the permissions or prohibitions

assigned to execute them.

93

6.4 Phase II: Applying Policies to Use Cases

The previous phasc analyzes statically given, access control requirements without using
any policies and produces consistent and conflict-free accesscs. This phase (steps 3, 4, 5
and 6) applies policies that are specified using AuthUML rules relevant to Use Cases.

Such policies may add ncw permissions or change existing ones.

6.4.1 Propagation Policies

Most systems use some hierarchies to benefit from inheritance. This step may generate
new permissions according to chosen propagation policies. All explicit or derived
permissions arc transformed to the form of dercandogs rules (derived authorizations).
Some examples of propagation policies are listed in [JSSSO1] and represented as

AuthUML rules in Table 6.2.

6.4.2 Inconsistency Resolution Policies

In complex systems with many Use Cascs, permission propagation may introduce new
permissions that in turn may result in new inconsistencies. Inconsistency resolution
policies resolve such inconsistencies. Examples are listed in [JSSS01] and represented as
AuthUML rules in Table 6.3. The rules in Table 6.3 define inconsistency resolution
policies. For example, for the denial take precedence with an open policy, if there is no
denial, permission is granted for such subject. However, in the case of a closed policy,

the previous definition is not enough because there must be a permission in the absence

o4

of a prohibition. The last rulec completes the rule base prohibiting every access that is not

permitted.

Table 6.2. Rules for Enforcing Propagation Policies on Subject Hierarchy.

Propagation policy

Rules

No propagation

No overriding

Most specific

overrides

Bath overnides

dercandouc(X+ Xue) candope{ XK +Xu,)

dercandogc(3., —Xooe candom(X -Xue)

dercandope(3 +X)« candoge(3 . +X e, in(3 X0

der candoye{X -X.,)« candoy, (X, =3 00 X ¥

dercandouc(X, +X e candoyo(X +3X . (X X .,
—OVeTy i X X ot XKue)

dercandoyc(2. —X e candoyo(X, X, In(X X,

~overo{ X X —Xuo)

overpe(XeXe+ Xy)¢ candopc(X, —X.p), (X, X7, in{X 270,

5'# 5’

GVEPUC(Xm Xs‘._Xuc)"' Ca‘ndOUC(X“Sa"'Xun)u m(Xs, X“s)u in(X”s. X,sl

dercandoys(X,+Xuo)¢ candoy(X.+X.,)

dercandouc(X, X« candoys(3,., %)

dercandonc(3, +Xue)« candoy (X +Xue), ~eandoyc(3, —Xuc),

dercandoyc(3X, —Xio)¢ candous(3., —Xue), —candoys(3a+Xue),
dirin(3, 2T

95

Table 6.3. Rules for Enforcing Inconsistency Resolution and Decision Policies.

Inconsistency Decision Rules
Denial take preccdence apen doue(HA4X, 1« ~dercandon(¥ -Xu)
Dental take precedence closed douc(X+ X, Je dereandon X, + ¥ .o,

—dercandonc(3—X ..}

permission take precedence open doge(X +X.,) dercandon (Xo+Xue)
dove(Xe+Xue)e —dercandon X —Xy.)

permission take precedence closed doye(X+ X,)+ dercandoy (X, +X)
Nothing take precedence open doyc{ X+ X,)& ~dercandoygt X, -X,)

Nothing take precedence closed doyef X+ X o) dercandope{ X, +X el
~dercandoy-(X.-2,)
Additional closure rule doy (X, ~Kuere —~don (X422,

6.4.3 Decision Policies

Decision policics complete authorizations so that every subject must have either a
permission or a prohibition to execute each Use Case and operation. Following are some

decision policies that have been suggested:
Closed Policy: Accesses without permissions are prohibited.
Open Policy: Accesses without prohibitions are permitted.

This is the last step that finalizes all accesses of Use Cases to subjects that are consistent
with each other and complete. They are written in the form of doye rules. AuthUML like

FAF ensure the completeness of access control decision by enforcing the following.

dOUG(Xs,—Xuc)(—_'dOUC(Xs,"‘Xuc) (12)

96

6.4.4 Alerting the Requirements Engineer of Changes to Use Case

Accesses

As stated, final accesses of the last step are consistent with each other, but it may have
changed the onginal requirements. Also, there may not be sufficient rules to resolve
application specific conflicts. This stcp uses the alerty, predicate to inform the
requirements engineer of such changes or problems.

alertyc(XeXuo)candoye(Xs+Xue), douc(a—Xuye) (13)
alertyc(Xs.Xue)candoyc(Xs—Xue), Aouc XstXue)

Rule 13 says that an alert message will be raised if there is an access control requirement

and a contradicting final authorization for the same subject on the same Use Case.

Once informed by AuthUML the requirements, thc engineer can revisit potential
problems and, hopefully, resolve them before proceeding to apply fine-grain policies that

specify opcration level accesses.

6.5 Phase III: Applying Policies to Operations

The previous phase produces consistent and conflict-free Use Cases. This phase (step 7, 8
and 9) analyzes operations to ensurc consistent, conflict-free and complcte permissions to

invoke operations,

97

6.5.1 Propagating Permissions to Operations

This phase applics fine-grain access control policies to operations. Recall that Use Cascs
are described using operations and some execution order among them. Because any Use
Case contains one or more operations, permission to invoke a Use Case propagates to its
operations. Following rules specify such propagation policies.

dePCandOOP(Xs,_Xop)(—UG_OP(Xuc,XQp), dOUC(XS,_XuC) (1 4)
dePC&ndODP(Xs,‘l'Xop)FUG_OP(Xuc.Xop), dOUC(Xs,+Xuc>

Rule (14) says that, if an operation is part of a Use Case, the permission of the Use Case

propagates to that operation.

6.5.2 Inconsistency Resolution for Operations

Because an opcration can be called on behalf of more than onc Use Case and, thus, can
inhent permissions from more than one Use Case, applying rules such as (14) may
introduce conflicts. Therefore, conflict resolution must be applicd to operations. As |
stated before, I assume that each positive permission of a Use Case is inherited by all its
operations. Conversely, a prohibited Use Case must have at least one prohibited

operation.

An operation may be called in two Use Cases with contradicting permissions for the same
subject, with the result that the subject will have been granted a permission and a
prohibition to execute the same operation. One policy that can resolve this contradictory

situation is to retain the permission to execute the operation for the subject only if another

98

operation belonging to the prohibited Use Case already has a prohibition for the same
subject. In doing so, I preserve the assumption that, as long as there is at least one
prohibition on operation for a subject in a Usc Case, that Use Case has a prohibition for
the same subjcct. Rule 15 specifies this conflict resolution policy as an AuthUML rule:

A0op(K+ Xop e—dercandoop(X +Xop), dercandoop(Xe—Xop). (13)

UC_OP(Xuc,Xop), doye(Xe—Xue), UC_OP(XumX’op)‘
deI’C&ndOop(Xs,—X’op),X,op-'f-'X{)p

6.5.3 Completing Accesses for Operations
Therefore, after the application of rule 15, AuthUML ensures the following:

1. There is no operation with contradictory authorizations for the same subject.

2. For every subject, all operations of a Use Case are permitted if the Use Case is
permitted.

The next two rules ensure that all permission of a subjects to invoke operations will be

represented as do predicates and, therefore, either granted or denied, but not both. These

rules were used in FAF also.

dODP(Xs,‘l‘Xop) — dercaIldooP(Xs,"'Xop), ﬁdGPC&I}.dOOP(Xs, - Xop) (16)

dOop(Xs,—Xop) <« -ﬁdOQP(XS,-I-Xop) an

6.54 Alerting the Requirements Engineer of I[rreconcilable Conflicts

Continuing with the cxample given at the end of Section 6.5.2, if there is no X'y

prohibiting X, rule 15 cannot resolve the inconsistency. Hence, AuthUML will raise a

Y

conflict message to the requirements engineer informing its inability to resolve the
contradiction, as stated in rule 18.
Ca.HHOtReSIOVe(XS,XuC,X1ch0p)<— dercmeOP(XS,'l'Xop), (18)

dercandoep(Xs—Xop), 2A00p{ XK+ Xop), XuctX ue
UC OP(XyeXop), UC OP(X'y e Xop)

aleTtop(X Xop J—A00p(K+ Xop),d00p(K+ K'op), (19)
conflictingOP(X p. X op). —ignore(XopXsX's)

&1ePtOP(chXs)‘(_dOOP(X&"‘Xop),doop(X,s,+Xop), (20)
Conﬂict’mgsubjECtCGnan(XS!X,Sv Xop), ﬁjgnore(Xop,Xs,X’s)

Rule 19 triggers an alert message if it finds a subject Xs that has an authorization to
invoke two operations that conflict with each other. Rule 20) triggers an alert message if it
finds two conflicting subjects that have authorizations to invoke the same operation. Both
rules will not hold if the requirement engineer explicitly allows that conflict by using the

ignore predicate.

At the end of phase 3, from the finalized authorization one can generate an access control

list (ACL) of all positive and negative permissions of all subject to all operations.

6.6 Conclusions

AuthUML diverges form others work in this area by focusing on analyzing access control
requirements at the requirement specification stage rather than modeling them with extra

syntactic enrichments to UML. I have developed AuthUML, a framework that analyze

100

access control requirements to ensure that the access control requirements are consistent,
complete and conflict-free. The framework propagates access permissions on subject
hicrarchies and solves inconsistencies between authorizations by enforcing predefined
policies that are written using the logical langnage of AuthUML. To assure fine-grain
analysis of access control requircments, AuthUML considers access control requirements
for both Use Case and its operations. This work aims toward bridging the gap between

Logic programming and formal security engineering.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S tosawnd)| gl

Wijesekera, Duminda(Super.) TVICY IUPY 73

1998 HENVWN PR

b= y9 S ,49 ‘8990

1-155 rolxaall

618333 :MD 38,

ol Jlw, ' Sgizall g9

English :axlll

ol,9:8> alw, rauolell as)all

George Mason University Aol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

)) albgimo Soixl gaa> .anghiall 5> 2019 ©
plazwl Ssloll 038 aclb ol Jrox diSoy .abgazo uinll J9i> geox Ul lale il Jgi> Cleol go gdgall Sl (sle by d>lio 83lo)l 03
A ol il Bgi> Lol (o ooz aurai Ugs (g SIVI sl ol oVl g8lgo Jin) Aliwwg ST e siaidl ol Jugxill of Gl grovs s (sasesidl

ol L) fyl_i.lsl

.anghioll

www.manaraa.com

https://search.mandumah.com/Record/618333

Chapter 7

FLOWUML

The previous chapter introduced AuthUML that analyze access control requirement. This

chapter introduces FlowUML that analyzes information flow control requirements.

7.1 Introduction

The information flow control pelicy is an important aspect of security that restricts
information flowing between objects. In order to formally analyze information flow
policies during the requirements and design stages of the software life cycle, 1 developed
FlowUML. It is a flexible framework using locally stratified logic programming rules to
enforce user specifiable information flow policies on UML based designs. It utilizes the

following steps:

1. Extracts information flows from the UML sequence diagram as predicates.

2. Derives all inherited and indirect flows.

3. Checks for compliances with specified policies.

FlowUML utilizes stated steps for pragmatic reasons. First, information exchanges

between objects are drawn using sequence, activity or collaboration diagrams, at the early

101

102

stage of development. I choose sequence diagrams for illustrative purposes, and my
methodology applies to others as well. Second, at this stage, it is casier to re-draw and
visualize dircct and transitive information flows using these diagrams. Third, indircct
flows and those that result from inheritance may not be visually obvious and, therefore,
automated support in deriving their consequences could aid the visual design process.

Fourth, FlowUML extracts information flow based on specified policies.

Policies in FlowUML are specificd at two levels of granularity. At the coarser level, a
flow is a directed arc going from its source to a sink. At the finer level, flow is qualified
based on the semantics of methods, attributes passed between the caller and the callee,

and the roles played by caller and callee objects in the design.

FlowUML does not assume any meta-policy, and it is flexible in using many of them.
Although, there are many important coniributions in flow control models and policies,
FlowUML advances over others in applying a formal framework in the early phases of

the software development life cycle.

The remainder of this chapter is organized as follows. Section 7.2 shows information
flow specifications embedded in the UML sequence diagrams. Section 7.3 provides a
running cxample. Section 7.4 describes the notations and assumptions. Scction 7.5
explains the FlowUML process. Section 7.6 has the syntax and semantics of FlowUML.
Section 7.7 shows the expressibility of FlowUML by means of the running example.

Section 7.8 describes the larger scope of FlowUML.

103

7.2 Flow Specification in the UML

The Use Case, which is onc of the UML diagram models rcquirements, specifies the
usage scenario between the system and its intended users [BRJ99]. These are followed by
interaction diagrams specifying how objects in the use case interact with each other to
achieve the end objective. Sequence diagrams are specific intcraction diagrams that show
such interactions as a sequence of messages exchanged between objects and ordered with
respect to time. The sequence diagram shown in Figure 7.1 consists of four objects and
two actors, where Actor A initiates the first flow as a request to read information from
Obj3 which then returns the requested information. Then, Actor A writes information to
Obj4 and the control object, following which the flow to the control object triggers other

flows.

ActorA Obj3 Obj4 control Qbjs ActorB
:' read : :
i 1 :
SR |
write E

Y]

|

|

1}

I

L

: : : read

t 1 I

I I I N
I I | 1

1] |]

i i - e 1
] t i . :e]
I | [write 1 1
| | 1
l : K X T wrile
| 1] |]
I I I I :
1 | | 1 write
I I | I .
J 1 | — +
t 1 | |

Figure 7.1 Sequence Diagram for Use Case2 (coarse grain)

As shown in Figure 7.1, every usc case starts with an event from an actor followed by a
sequence of interactions between internal objects and possible actors. During these
interactions, information flows among objects and actors. Because sequence diagrams
capture information flow, FlowUML extracts these flows from them. Thus, one could

writc a parser to automate this process from the output of tools such as Rational Rose

[Ros03].

7.3 The Running Example

The example consists of two use cases. Use case 1 has a simple scenario shown in Figure
7.2, and wuse case 2 has a morc complex scenario shown in Figure 7.3. The actor in use
case [reads information from object Obj/ returned as an attribute ar¢/ and then writes 1t
to Ohy2. The actor in use case 2 transfers information between two objects and then calls

another object, leading to more information flow.

ActorA

Read(}
Return(attt)

write(att1)
|

——
{

B
Y S g

T
t
|
|
1
1
I
|
T
|

Figure 7.2: The Sequence Diagram for Use Casel

105

During the analysis stage of the software development, selected interactions are specified
between objects. These interactions are further rcfined by specifying the message’s
attributes or parameters passed between objects. Therefore, the expressiveness and detail
in a sequence diagram depends on the analysis stage. For example, the sequence diagram
of use casc 2 can be categorized into two views: coarse grain view shown in Figure 7.1

and the fine-grain view shown in Figure 7.3.

Actord Obj3 Qbj4 contro| Qbis ActorB
i read(att?) | i ; i :
S : : : :
\Retumn{att2 alt3), ! ' ! '

e | | I 1 |
: write(att2) | |) |
| : . : : |
: | celtets) | : : :
r + +—] 1 i
: '| ! ' read(at3} | ':
i | I
' ! i | Return(att4) | ;
: : : SRR | :
; | | owrite(attd) | l !
] 1 | |
' ' : : I write(atts) |
[} | | |
' | \ : write{att6) l
1 I 1 |] ol
| § 1 I T bt |

Figure 7.3: Sequence Diagram for Use Case 2 (fine grain)

106

7.4 Notations and Assumptions

7.4.1 Sources, Sinks and Object Types

Objects in sequence diagrams belong to three categories: actors, entities and control
objects. Actors initiate flows and send/receive information to/from the system as
externals. Every use case has at least one actor. Entity objects live longer and store
information. Control objects provide coordination and application logic. Generally, actors
and enlity objects can be sources or sinks of information flows. Control objects do not

store information, but they may creatc new information without storing them.

Axiom 1: Sources and sinks of information flows are actors and entities.

7.4.2 Method Names and Information Flows

Information flows in sequence diagrams arise due to attributes passed in method calls
such as read and write. For example, the method call readfatt!) that reads specific
information from o#j3 exchanges information by scnding afrl. FlowUML uses any

message as a flow of information, regardless of its name.

Axiom 2: Any message with value is considered an information flow.

74.3 Complex Message Constructs in the UML

Sequence diagrams construct complex messages from simple ongs using four constructs:
creation messages used to create new objects, iteration messages used to send data

multiple times, and conditional messages. 1 consider a creation message as an

107

information flow if the caller passes a creation parameter value to the callee. I consider an
iterated message to constitute a single information flow. I consider a conditional message
to be an informatton flow, regardless of the truth-value of the condition. 1 consider a

simple message as a flow if it passes information.

7.4.4 Attribute Dependencies Across Objects

First, information flowing into an object may flow out unaltcred; this is called exact
attribute flow in FlowUML. Second, some attnibutes flowing out of an object may be
different in name, but always have the same value as an attribute that flows into the same
object. FlowUML requires this information to be in the similar attribute table. Third,
some attributes flowing out of an object may depend upon others that flow into the same
object. FlowUML requires this information to be in the derived attribute table. The
rcason for knowing these 1s that, during the requircments specification stage, exact
method details may not be available — but, without such properties, it is not possible to
derive the consequences of information flowed across objects. I formalize these in the

following definition and axioms:

Definition 1: An exact attribute is one that flows through an object, but does not change
its value. When an attribute flows out of an object that depends upon a set of attributes
flowing in to the same object, I say that the second atiribute is derived from the first set.

Axiom 3: Auribute names are unique over a system.

108

Axiom 4: For every attribute that flows into an object, another attribute flows out of that
object with the same value, but with a different atiribute name, and both attribute names
are listed in the similar attribute table and this is considered an exact attribute flow.

For example, an input attribute named famifyName flows out of object A as lastName. If
their values are the same and listed in the similar attribute table, lastName is considered
an exact flow of familyName. If an attribute dateQfBirth flows into an object, another
attribute named age flows out of the same object and both are listed in the derived

attribute table, age s considered a derived of date OfBirth.

Metadata Additional Metadata for the fine-grain policy

Derived Attributes

Similar Attributes

¥ T

‘r
v

Detecting Safe Flow

unsafe flow

- . — N
Defining ! . i - [
propagating transitive Finalizing
Flow X : e o i
Ll inheritances | | flow policies | 7| Flow

|
structure ;
N N

| S T :
B e e KResoive flows mnﬂlﬂ@«- - - ——---Unsafe flow is detected -- - -

Figure 7.4: Steps in FlowUML

7.5 Verification Process

FlowUML verifics flow policics using five sequenced steps and four metadata sources as

shown in Figure 7.4. They are defining basic structure, propagating flow information

109

through inheritance hicrarchies, inferring transitive flows, finalizing flows and detecting
unsafe flows. These steps are the same for coarse grain and fine-grain policies. However,
the dctails of information and the metadata sources arc different when analyzing coarse-
or fine-grain policies. Coarse-grain policies have less detail. Fine-grain policies

incorporate attribute values and their dependencies.

7.5.1 Coarse-grain Policy Analysis

In coarse grain policy analysis, the available details of information about flow are the
objects and how they intcract with each other. The analysis starts with the first step,
called defining flow structure. During this step, FlowUML extracts flow structure
(objects, and their interaction) from sequence diagrams. This information is transformed
into some basic FlowUML predicates. During the second step, basic predicates are
propagated using the actor (or role) hierarchy. This step derives information flows
implied due to inheritance. Although information flows can be transitive, the previous
step does not derive those. Hence, the third step derives all transitive flows. The fourth
step complements the third step by filtering results of the third step to those flows that
satisfy properties of interests as specitied in policies. For example, in Figure 7.1 the third
step derives a flow from Obj3 to Actor A directly, flow from Obj3 to Obj4 through Actor
A, flow from 0Ob;j3 to control through Actor A ctc. The fourth step, filters out unwanted
flows according to predefined policies. For example, a policy may only filter in non-
transitive flows between only entities and actors; thus, only flows from Obj3 to Actor A

and the one from Actor 4 to Obj4, but not the flow from O&j3 to Obj4, may be of

[to

relevance. The last step detects flows that violate specified policies. At the moment,

FlowUML docs not attempt to resolve them automatically.

7.5.2 Fine-grain Policy Analysis

As stated in Section 7.4, finc-grain policies require two kinds of additional information.
The first, given in the similar attribute table, contains distinct attribute names that always
contain the same data value. The second, given in the aftribute derivation table, lists
attribute dependencies, This information is useful in controlling the flow of sensitive
information. For example, in Figure 7.3, if there is a record in the artribute derivation
table stating that att6 is derived from aft3 in the control object, FlowUML concludes that

there is a transitive flow from Acfor 4 to Actor B.

7.6 Syntax and Semantics

FlowUML terms are either vanables or constants belonging to five individual sorts:
actors, objects, usc cases, attributes and times. Constants belong to sets A, Obj, UC, Att,
and T, and variables are represented as X, XKooy Xue Xar, and X, respectively.
FlowUML uses a set of predicates, as summarized in Tables 1 and 2 and categorized as

follow:

Basic predicates for supporting the specification of flows, called FlowSup.

1. A unary predicate isEntity(Xon;) meaning X, is an entity.

2. A unary predicate isActor(Xoy;) meaning X,y is an actor.

111

3. A binary predicate specializedActor(X,Xs) meaning X', is a specialized
actor of X..

4. A binary predicate precedes(Xy., X'yc) meaning usc cases Xy, and X', are
cxecuted in that order.

5. A binary predicate sameAtt(Xau, Xatt) meaning attributes Xape and X'ars
have the same value.

6. A temmary predicate derAtt(Xae, X'art, Xon) meaning that the flowing-out
attribute X',t; 15 derived from the flowing-in attribute X,tt, an that derivation is
occurring at object X ;.

7. A temary predicate ignoreFlow(X,, Xov;, X’obj) meaning to exclude the flow
from object Xyp; to object X'on; from being considered as a violation of flow
control policies.

8. A 6-ary predicate ignoreF1lows(Xa1, Xonjl, X'onjl, Xaz, Xobjz: X oniz) to
exclude the flow from Xy, to 2oy and the flow from X2 to Xop2 from
being considered as a violation ot flow control policies. Two similar predicates
ignoreFlows, e (Xa1 Xae XKon, X oo Kaz, Xobjz X onjz)} and
12N OTeF1oW 41, Xa X aet, Xonj: X'ony) are used in fine-grain policies.

Predicates for specifying flow constraints, called ConstSup.

1. A binary predicate dominates(Xep,X ob) meaning that the security label of
object X'or; dominates or cquals the security label of object Xy, It is used in

multi-level security policies.

2. A binary predicate ACL(X X o1 Xar) meaning that object Xoy is in the

access contro] list of object X'op;. It is used in discretionary access control
policies. X a7 is an operation such as read or write.

A binary predicate conflictingActors(Xop, X'op;) meaning that actors Xoy;
and X'y, are in conflict with each other for a specific reason. For example, both
actors cannot flow information to the same object or there must not be a flow of
information between them.

A binary predicate conflictingEntities(X, X'on) meaning both entitics
Xon; and Xopy; are in conflict with cach other for specific reason. For example,
each entity belongs to different competitive company and information must not

flow in between.

Predicates for coarse-grain policies

l.

A 6-ary predicate Flow (X 5, Xon, X onji Xt Xue, Kop) meaning there is a simple
flow initiated by actor X, from object Xp; to object Z'oy,; at time X in use case
Xue and operation X gp.

A 5-ary predicate mayFlOW(Xa,Xoij’Ubj,Xt, X,c) is the transitive closure
of the previous predicate.

may FloWinteruol XaXow X onjp Xt Xue) is similar to mayFlow but the
scopc of MayfloWinterue 1 between use cases instead of focusing in one use
case. Note that I want to know the beginning and ending operations rather than

the beginning and ending use cases.

4. A 4-ary predicate fmalFlOW(XaX0bj,X1gbj,Xt) meaning a finalized flow.

112

113

5. finalFloWinteruc{ Xa.Xoop X obpXe) is similar to finalFlow, but it covers
flows between use cascs.

6. A tcrnary predicatc unsafeFlow(X, X o, X'ony) meaning there is an unsafe
flow from 2oy to X'op; initiated by actor 2.

7. A 6-ary predicate unsafeFlows(Xa1, Xonj, Xobjls Xa2 Kobjz X oba)
meaning there are two unsafe flow. The first, initiated by actor X,; flows from
Kown to X'onj1. The second, initiated by actor X2 flows from object Xopjg to
object X'opja. They are unsafc because together they violate a flow constraint.

8. A ternary predicate safe Flow (XX 0. X on) meaning that the flow initiated by
actor X, from object Xy to object X'oy; 1s safe.

Predicates for fine-grain policies

The predicates used to specify fine-grain access control policies are similar to the ones
for coarse grain policy, but include X,y as an attribute flowing between objects. They are

as follows:
FloWau(Xa Xatt Xoop X ot Ko Xue, Kop)s
mayFlowa(Xa, Xatt, Xobi X objr Xt X ue),
mayFlowinterue_an{ XaXatt Xoop2K ooy Xt 2 ue s
finalFloWag{ Xa Xart, Koo X obpKt.)s
finalFloWinteruc_at:(XaXatt Kooy XK onp X e,
unsafe Flow i Xa. Xa Xon X o),

unsafeFlowsau{ Xa1, Xart1, X obi1 X objl X az Xatt2 2 onjani obj2)»

7.6.1

safeFlowau(Ka Kase1, KonpX o)-

Semantics of FlowUML

114

A FlowUML rule is of the form L « L. .1, where L , 1,, .1, arc literals satisfying the

conditions stated in Table 7.1 and Table 7.2. Rules constructed according to these

specifications form a locally stratified logic program and, therefore, has a unique stable

model and that stable model is also a well-founded model [GLEE].

Table 7.1. FlowUML’s Strata for Coarse-grain Policies

Stra-

Phase Predicate Rules defining the predicate
FlowSup predicates - base relations.
v ConstSup predicates base relatiuns
1 Flow(X, X, X o X0 Ko Xep) body may contain FlowSup predicates
2 o mayFlow(X, 2. XKoo X0 XD body may contam literal Irom strata 0 1o 2
mavFlow . cuclX, Xeoy X o X Koo)' body may contain hiteral from smata 0 1
B 3 and 3
£ R
;';D K [l FlOwCH, Ko Ko L0) body may contain hiteral from strata 0 (o 3
§ fmalFlow, cucl X, X X vy X000
L unzafeFlow (X, X,. X.n)
5 unsafeFlowst X, Xerp X o1 Lo body may contamn hteral from strata 0 1o 4
Kere X o)
6 zafeFlow(X, X X.u) body may contain hteral from strata O to 3

Table 7.2. FlowtUML’s Strata for Fine-grain Policies

L

FPhase St::- Predicate Rules defining the predicate
* FlowSup predicates basc relations.
v ConstSup predicates base relations
Flow,{ Ko Koz Xovy Kovp Ko Ker Kop) - body may contam FlowSup
! predicates
MmayFlow, 4 X, X oy Koy X Xne) body may vontain litceal from
: strata 0, 1 and 2
MayFIoWinerue ad Ko Kate Kow Koy Xo Xue) body may contain literal from
E 3 strata(t, I and 3
iﬂ finalFloway (Xa Kaw o Xon X1) body may contain titera] from
£ inalFIoWiwmoe sl Xt Fan Kon X5 strata 0 10 3
unsafeFlows(Xa Luw Xety Xon) botiy may contain hteral from
3 unsafeFlows,,(Xa X020 » 1 Xopn Koz Karea,
Kotz X'ongz) strata 0 to 4
safeFloWa(Xa Kaw Xovy Xow) body may contam hieral from
° stratato 5
7.7 Applying FlowUML

This section shows how some samples of FlowUML policies and how they can be used to

detect unsafe flows.

7.7.1 Basic Flow Predicates

Examples of flow information available in Figure 7.2 are given in rules (1). The rules (2)

to (6) are instances of FlowSup predicates valid in Figures 2 and 3.

Flowa(ActorAattl,Objl,ActorA,luclopl)«
Flowa(ActorA attl ActorA 0bjR.2uclopl)«

oy

116

isEntity(objl)« (2)

isActor(actorA)« (3)
precedes{uclucd)« (4)
sameAtt(att3, att3)« (5)
derAtt(att3, att6, control)« (6)

7.7.2 Propagation Policies

The second step applies a policy that propagates flows along actor hicrarchies. In the
example, if there is a specialized actor say Actor C of Actor B then Actor C receives a#ts

and art6. Policies stating acceptable inheritances can be stated in example rules such as

(7) to (9).

Flow(X's, Kooy Xonj Xt Xuer Xop) FIoW(K0 K ops, X obp X tnX 0. X op)s

_ &)
specializedRole(X,, X')
F].OW(Xa, X"obj, X‘obj, Xt,, Xuc, Xop)(_' FlOW(Xa,Xoij,OijtXuc. XOP)! (8)
isActor(Xop), specialized Actor(Xou, X on;)
FlOW(Xa, Xobj, X“obj, X, Xue Xop) «— FIOW(XB.XOU}X,UDJXTHXUC’ Xop) ©)

JisActor(X oy specialized Actor (X o, X ony)

Rule 7 says that every actor that plays a specialized role of an actor that initiates a flow
also initiates an inherited flow. In rules 8 and 9, for every flow from or to an actor,
respectively, rules 8 and 9 add new information flow for every specialized actor of the

actor who sends or receives the information, respectively.

117

7.7.3 Transitive Flow Policies

Policies written for the third step recursively construct transitive flows from basic ones.
This step is sufficiently flexible to accommodate various options discussed in Section
7.4.5. Due to space constraints I show some examples in rules 10 through 13. Rule 10
declares a basic flow to be a transitive flow and rules 11 specifies all possible information
flows between any types of objects and rules 12 specifies possible flows that goes
through an intermediate object that is not an actor or an cntity. The flow between Obj5
and Obj4 arc examples of such flows. Rule 13 specifies all flows that respect the
precedent order between their use cases. The flow between Obf/ and Obf3 is such an

example.

ma‘yFIOW(Xa‘ Xobi X'obj, X, Xue) FIOW(KH.,Xob}X’oijh,Xuc‘Xop) (10)

m&yF10W(Xa, Xobj, X,obj, Xt; Xuc)’:_ F]-OW(Xa.XobjsX,obet;Xuc,Xop)
mayFlow(X,, Xovp Kovp X, Kue)e FIOW(Xa.,chjXBTWoijxt»Xchop) (an
may Flow (X, Xsrwonp X oty X 1. Xue), Xt < X't

mayFlow(Xa, Xog, KXoy Kin Xue) FIoW(XeXow X obp X 6. X ueXop)
mayFlow(Xa, Xovs XonpXe, Xue) FIoW(Xa XonXsrwobpXeLueXoph
may Flow(Xa. X arwors X oo Xt Xuc),
X, < X, —(isActor(Xprwoy); 1SENtity(Xprwon))

(12)

mayFloWinteruc{ XaXonp X abpKtKue = F1oW (X5, XK o3, XK 00521 X ue X op)
may FloWinteruel XaXonp X ovj e, Kuc) ¢
Flow{ X a0, Xonj XBTwobj Xt KueXop.), (13)
may FloWinteruc{ Xa X BTwoni 2 objs2x t-X ucs
(XX, Xue=X'uo)s precedes(Xue X ue))

118

Previous examples show coarse-grain flow policies. I now show some fine-grain flow
polices. The first cxample permits flows using different attribute names to contain the
same value from the similar attribute table. Rule 14 states that if a#¢3 and a3’ 1n Figure

7.3 have the same value then the flow of a#t3 from acfor A to Obj5 is permitted.

may Flow(Xa, Xaw, Koy 2oy Koo Kue)

Flow(Xa, Xa, Lonp Kopg XKt KueXop)

mayFlow(Xa, Xag, Xonj Xoby Xi Xuc)e
Flow(Xa, Xas, Koy XBTWob, Xt XucKop)
mayFlow(X o, X it X BTwonj 2% obi 1K ue),
K< X, (sameAtt(Kare Xare); Kaw=Xare)

(14)

Rule 15 specifies that all transitive flows are accepted provided that attribute derivation is
confined to intermediate objects. For example, if Figure 7.3 had an entry in the derived
attribute table stating that af#6 is derived from a#3 in the control object, the flow from

actor A to actor B is permitted.

mayFlow(Xa, Xats, Koo Xovp Xt Kuc)
Flow(X s, Xatt, Xobp Xovg Xtn XueXop)
mayFlow(Xa, Xaw, Xovy KXot Kb Kue) €
Flow (X, Xaz, Xonj, XBTWobj Xty Xuc»Xop) (15)
mMayFIOW (X, X are. XaTwori X obpX X ue)»
Xt < X', (sameAtt(Xap, Xaw);
Kan=X'arr, AT AL Karr, X'at, ZKnrwoni))

7.7.4 Finalizing Flows

After propagating flows along inheritance hierarchies and extending them to become

transitive by using recursive rules, the fourth step provides filtering policies to choose

19

desired flows. An example is rule 16 that chooses all possible information flow that starts
and ends in actors, entities or both inside a single usc case. Rule 17 does the same, but

acCross Us<c casgs.

f]'nalFlow(Xa, Xobj, X‘Ub-j, Xt)("— mayFlOW(Xa, ngj, X‘ob‘j, X, Xuc),

(16)
(isActor(Xon); 1sEntity(Xap)), (isActor(o); 1sENtity (3 an))
finalFlowinterve(Xa, Xonj Xovy, Xi)e
mayFlOWmtepU(:(Xa, Xobj, X,obj, X, Xuc)s (17

(isActor(Xk iSENtity(Kon))
(isActor(Xo); isEntity(X'oy))

7.7.5 Detecting Unsafe Flows with Respect to Policies

This section shows FlowUML specification of known flow control policies, and how to

detect unsafe information flows with respect to them.

Mandatory Access Control (MAC) restricts subjects in accessing objects that are
classified higher than them [BL75]. In order to do so, all objects are labeled with
sensitivity levels and all users have clearance levels. Rule 18 ensures that, if information
flows from Obj! to Obj2 and the Obj2 does not dominate or equals the security label of
Objl, this is considered unsafe.

unsafeFlow(X.,, Xobil, Xobjg)<— finalFlow(X,, Xobjls Xobjg, X,

ﬁdomm&teS(ngﬂ, Xobjg) (18)

Discretionary access control (DAC) allows subjects to access objects solely based on

the subject’s identity and authorization. Objcct owners have the discretion to allow other

120

subjects to access their objects using access control lists (ACL). Rule 19 specifies
unauthorized information flows from an actor to an object and rule 20 specifies

unauthorized flows from an object to an actor.

unsafeFlowa(Xa, Xatnr, Xobjl, Xonja)<

finalFlow(Xa, Xai, Xobil, Xobjz, X, _'ACL(XobjL Xongz, w) (19)

unsafeF1oWu (X, Xat, Xavgz, Koo e

finalFlow(X,, Xawt1, Xong, Xonj1, Xt ~ACL(Xop1, Xonja,) (20)

Static separation of duty (SsoD) prevents actors that have conflicts, e.g., the account
payable manager and the purchasing manager accessing the same object. Policies can
restrict a particular information flow between two conflicting actors such as is specified
inrule 21.

unsa.feFlow(Xa, Xobjl, XObjS)'(_ finalFlow(Xa, XobjL Xobjz, Xt,),

finalFlow(X,, Xobg, Xows. X't), conflictingActors(Xoy, Xonal.
(21)

isActor(Xop1), isActor(Xobj3) Xt<X't
Another example policy restricts passing two attributes by the same actor, as stated in
rule 22. A third example in rule 23 prevents two conflicting actors from passing the same

attribute to the same object.

unsafeF10wsau(Xa Kaw1, Xon-Xobjz, X ar-Xattz: KobidRohja)¢
finalFlow(X,, Xaw1, Xobjl, Xobjz, Xt
finalFlow(X s, Xatz, Xons Xobjz X't),
isActor(Xonj1), 1sActor(Konz), Xooj=Xobjs, Katt1#Xatta

(22)

121

unsafeFlowsan(Xa Xas1 Xonit, Xobja, X aXatt 12 objz Konig)«
finalFlow (X, Xattl. Xojl. Kobz, X,
finalFlow (X a, Xaw1, Xobs, Xobjz, Xb), (23)
conflictingActors(Xonii, Xous),
isActor(Xop), isActor(Xoys)

In detecting unsafe information flows, FlowUML raises an alert to the analyst to resolve
it and run FlowUML again. However, the analyst can tolerate particular violations, as
shown in rule 24 that modifies rule 18. Rule 24 states that, if an information flows from
Obj1 to Obj2 and Obj2 does not dominate or equals the security label of Objf and the
security analyst has not tolerated it before, it is an unsafe flow. I allow this option
because some specification methods tolerate known inconsistencies
[NEO1,[GH91,GH92].

unsafeFlow(X,, Xonj, Xong)« finalFlow(Xa, Xopn, Xoojz, Xt
ﬁdOmm&tGS(ngjl,Xobjg), ﬁigD_OI’eFl()W(XaXij,X’obj) (24)

Rules 25, 26 and 27 declare any flow that includes an unsafe flow fragment to be unsafe.
Rules 28 and 29 are related to unsafeFlows predicate that detects two flows to be
unsafe, the rules mark every single flow in that predicate as a single unsafe flow.
unsafeFlow(Xa, Koy, Xopjs) mayFlow(Xa, Xopg, Xons, Xt

unsafeFlow(X,, Xoyz, Xonis): (25)
mayFlow(Xa, Ko, Koz, Xt)

u_nsafeFIOW(Xa, Xobjg, Xobj‘i)(_ ma,yFlow(Xa,, ngjg, Xghj4, Xt,),
unsafeFlow(Xa Xopjz, Xobjz), (26)
mayFlow(X,, Xoniz, Kovja, Xt)

122

unsafeFlow(Xa, Xonjt, Xobja)¢~ mayFlow(X,, Koo, Xobja, Xt
unsafeFlow(X,, Xona, Xonjz),
mayFlow (X, Xanl, Xobz, X,
mayFlow(Xa, Xonz, Xobja, Xt)

(27)

unsafeFlowa(Xa, Xai, Konji, Kowja)
: 28
unsafe F1owsa{ Xa. Xace1,Xonj1, Xovj2 X a, Katt2, Xobja-2obiz) (28)

unsafeFlowa(Xa, Xaiz, Xobjaz, Xobjz)¢
unsafe Flowsau{ Xa Xate1, Xobil Xonja X & Kattz, Xohjziobz) (29

The last step is a completion rule specifying that every flow is safe provided that it cannot

be derived to be unsafe, as shown in rule 30.

safeFlow(XKa, Xoby Xog) —unsafeFlow(Xa,Xon, X ob;) (30)
7.8 The larger scope of FlowUML

This section describes the larger scope and applicability of FlowUML in incorporating
security models to the software development life cycle. First, as shown in Figure 7.5
FlowUML transforms the geometric information in the UML vicws to a set of predicates
that can be used as basic predicates in flow control policies written as Hom clauses. 1
have shown how such policies can be used to derive compliance of sequence diagrams to
flow control policies. Because the UML pictorial sequence diagrams are saved as text
files (such as .mdl files of Rational Rose [Ros03]} with an appropriate translator, I can
now automate policy compliance checking of flow control policies by using appropriatc

logic programming engines, such as Prolog.

123

[|| oo || ow f[aom | [|| aw [| o]| oo |
Yoo read | | 1 i read | | 1
: " | ’ : * i :
PR : : PR ! :
i wrie ! 1 ' wrte . 1
' call ancther control E H call anather control E
The Sequence diagram of use case A The Sequence diagram of use case B
’7 The "0;0’ ‘Use case \ The ﬁow of use case £ | !” :::FIW \:
Aan the form of B in the form of KT _ . hnalFiow
FlowUML predicales FlowUML predicates unsafeflow |
<afeFlcw |
Enf
Enforced on nlorced on Enforced on_ Enforced on
Inf ti A Inf ti
nformation nformation information unsaleFlow(Xa, Xobi1, Xabj
. » Xobj2} «—
flow control fiow control flow control —Exemple finalFlow{Xa, Xobil, Xohi2, Xt),
policy B Y. policy ? policy A dominates(Xobj1,Xohj2),

Figure 7.5. FlowUML’s Scope

Second, other than the basic predicates used to capture the gcometric information given
in the UML sequence diagrams, other Horn clauses of FlowUML constitute policies that
are applicable at the early stages of the software design cycle. Thus, this division of
predicate layers shows the clear separation of the basic geometry of the design from
policy. As shown in the right hand side of Tigurc 7.5, the latter constituting of recursive

rules arc applied to a dewign constituting nstances of basic predicates. Therefore,

124

FlowUML can be considered an example framework to write policies applicable to the

UML.

This separation of policy from the application has many conscquences. The first is that it
facilitates applying any policy to any dewign As shown in Figure 7.5, policies B and C
can be separately applied to the sequence diagram of use case A, Similarly, as shown,
policies A and B can be separatcly applied to the sequence diagram of use case B. This
shows that more than one policy applies to one design diagram and that one policy

applies to more than one diagram.

Third, the same process can be used to check the consistency of two design diagrams
with respect to a given security policy. That is, if two design diagrams are compliant with
a given policy, as far as that policy is concerned, they are indistinguishable. I developed
this concept further in designing a notion of policy based equivalence of design diagrams

in the UML .

Fourth, if the UML policies can be separated from designs as shown here, a policy
composition framework for the UML policy compositions along the lines of

[BCVS00],[W]02] can be developed.

Last, by capturing more rules related to geometry of sequence diagrams, one may be able
to capture deficiencies in the diagrams. If successful, this may lead to a policy-based,

reverse engineering, framework for the UML diagrams.

125

7.9 Conclusions

FlowUML is a logic programming based framework to specify and verify the compliance
of information flow requirements with the information flow control policies in the UML
based designs at the carly phases of the software development hife cycle. I have
demonstrated the flexibility and the expressiveness by showing how existing information

flow control policies can be verified with FlowUML specifications.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t oo gl

Wijesekera, Duminda(Super.) FVICY IOVPY 73

1998 HENVWN PR

b= ,9 S ,49 ‘8990

1-155 1olxaall

618333 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University 4ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
plaziwlW 83l 0is aclb of Jrozs Sy .albgameo il Ygé> Ran ol lale o il Dgé> olesl go &dgall Syl (sle sly a>lio 83lall 030
s ol il Bgas> Llsol o ooz zupai e (csig SVl 4yl of iVl gdlgo Jio) lyuws oI eyl of Jusmedl of duwill gioyy hid suazeil
.aoghioll

www.maharaa.com

https://search.mandumah.com/Record/618333

Chapter 8

INTEGRATING THE ANALYSIS OF ACCESS AND
FLOW CONTROL POLICIES

The previous two chapters addressed both policies separatcly. However, because both
policies have a tight relationship between them, integrating the analysis of both policies
will improve the validation and cnforcement of access and flow control policies during
the software development life cycle. I integrate in this chapter both AuthUML and
FlowUML. I provide a collaboration framework and I show how to transform onc
framework output to other framework. Also, I show the flexibility and scalability bchind

the new integrated framework of AuthUML and FlowUML.

The integration is desired because, as I will show shortly, both access and flow control
policies are tightly coupled to cach other at the design stage, they both overlap, and each

one relies and/or provides useful information to the other.

The reminder of the chapter is organized as follows. A running c¢xample to be uscd during
the chapter is presented in Section 8.2. The integration of betwecen AuthUML and
FlowUML is described in Section 8.3. Section 8.4 describes the flexibility and scalability

of the two frameworks.

126

127

8.1 Running Example

In this section, I introduce an example to be used during the rest of the chapter. Figure 8.1
shows an example of an abstract use case. It shows the different use cases and the actors
who are allowed or not allowed to invoke them. The example represents a purchasing
process where a Clerk prepares an order, and then a Purchasing Officer places the order.
Later, the Clerk writes a check for the order and the Manager signs it. The actors (roles)
are ordercd in a hierarchy where every actor inherits the permissions of its higher actors.
For cxample, the Purchasing Officer inherits the authorizations of the Clerk and, thus, the
Purchasing Officer is allowed to prepare orders and write checks implicitly. The links
between actors and use cases is considered as pertnission while the link with Deny is
considered a denial execution. Each use casc consists of one or more operations to
achieve the objective of the use case. Sometimes an operation can be part of two use

cases. Figure 8.2 shows the sequence diagram of the Prepare order use casc.

128

“Prepare ”

.
Lmr Jorger | >
Clerk

o™y
—@ce order- P

Manager

Sign cheED

Figure 8.1 Use Cases of the Purchasing Process

Clerk obi1 gontro| Inventory staff
T L)] T
! read(attl) ! : !
—_N i |
IReturn{att2,att3), : :
(_ ________ d t |
E writefamt) ' :

N)

! T calatis)

————
:
|
|

1
!
!
i
|
|
|

Figure 8.2 . Example of Sequence Diagram

129

The following is the result of extracting the information flow from the sequence diagram
in Figure 8.2 that shows an example of a sequence diagram corresponding to the Prepare
order use case,

Flow,(Clerk, atty, Clerk, Objy, 1, “Prepare order”, read)e« (6)
Flow.(Clerk, atts, Obj;, Clerk, 2, “Prepare order”, read)«

Flowa{ Clerk, attz, Objy, Clerk, 2, “Prepare order”, read)«

Flow., (Clerk, atty,Clerk control,3,“Prepare order”, write)«

Flow,.(Clerk,atts,controlInventory staff.4 “Prepare
order”call)«

8.2 AuthUML and FlowUML Collaboration

AuthUML analyzes the access control, but does not analyze the control of information
flow. For example, Actor A has an authorization to access operation opl, but the
invocation of op/ will result in sending information to actor B who may not be allowed to
sce that information. Conversely, FlowUML provides deeper analysis of authorization
because it goes deep in to the attribute level of operations and considers implicit
operations that arc not directly called by actors that occur as consequcnces of initiated
operations. Thus, FlowUML provides new uscful information to AuthUML that will not
be available otherwise. Therefore, FlowUML complements AuthUML by providing it

with information that was unavailable otherwise.

FlowUML is applicd between phase 2 and 3 of AuthUML for several reasons. First,

FlowUML lists all operations of a use case that are taken from the sequence diagram.

130

Second, it reduces redundancy by extracting operations of use cases and improves
analysis efficiecncy by ensuring the proper flow of information before analyzing the
authorizations opecration level. Third, FlowUML provides new valuable data to

AuthUML that in turn well validate more access control policies,

8.2.1 Collaboration Process

The collaboration between AuthUML and FlowUML 1s shown in Figure 8.3 and in more
detail in Figurc 8.4. Because the new collaboration process requirces inserting FlowUML

between phases two and three of AuthUML, the combined process consists of five stages.

Sequence
Diagrams
development

! ™
._; Use Case AuthiML FlowOML AuthUML
- development use case level | Fine-grain policies operation Jevel

]

Figure 8.3. AuthUML and FlowUML Collaboration

131

AuthUML (Phase 1)
Autherization Representing Authorization | rsuiirg consislent and
Requirements(AR} Requirements Cor\ﬂncl free AR

Mool Language 7

Validating
Fixing Consistency : . Inconsistency
Authorization between AR and the Decision making . ropagation
Requirement | Finalized (9 Resotution ar
AC ﬂfﬂz;e& AuthUML - use case level (Phase 2)
7[5eﬁnin N
- 9 transitive Finalizing Detecting
Flow
Resolve ‘ structura flow policies unsafe flow
B!safe flows I -
jll_«__l
Unsafe flow is datected }
Safe Flow
Ensuring conflict-free inconsistency
authorizations Resolution
Updatin)
Aut,ﬁ'ﬁﬁuﬁon AuthUML - operation level (Phase 3)
éequirements

/ Finalized Authorization 7

Figure 8.4. Comprehensive AuthUML and FlowUML Collaboration

8.2.1.1 The Collaboration of Predicates

AuthUML and FlowUML are integrated well with each other to improve the analysis of
both access and flow control policies. Both frameworks® predicates collaborate
seamlessly with each other where one predicate is built on top of the other one. Figure 8.5
shows how the predicates of both frameworks are merged into one strata to provide the

needed collaboration.

132

AuthUML and FlowlML collaboration
Predicate
rel-predicates rel-predicates
0 hie-predicates - ————1 hie-predicates
con-predicates con-predicates
] SpInCenuc opInConUG o
1 conOpInUC -==——1 conOpInUC E
flowConInUC NowConInUC
b2 | candog, 00000 - ———— | candog,
3 alerty e alert o
4 over;. S ST OVED)
5 __ dercando,, 4 -——~—1 dercando,, o
6 Ao (X 4K} - do, (X +X,,) a
7 do (X, X)) - ————— do, (X, X) =&

8 | Taert, le----- alerty, o
FlowSup predicates 9 FlowSup predicates | '___f?:‘l ‘cando,,

. _Consbup predicates | > ConstSup predicates / do (X A4X) ®
Flow, s 10 | Flew o },"/ doo(X, X)) |8
mayFlow,, - 11 mayFlow,, | / 1/ ’_caxmotReslove o
MayFIOW, e o -y 12 MayFIoW, oy, / f':,’;{ alert,,
finalFlow,,, 13 finalFlow ff/ o K

| fINaFIOW, e 0 | * finalFlow, ... ,’Ir ,’ '/
unsafeFlow ol 14 unsafeFlow, S

| unsafeFlows, | unsafeFlows, | /,/7//

| safeFlow e safeFlow,,. ;ff,fff’

16 dercando ./ iy
17 Ao (X +X_) o
18 do()ixs‘ _Xm)) "f"
18 | cannotReslove /

20 alert,,

Figure 8.5, AuthUML ard FlowUML Collaboration Predicates

8.2.2 The Collaboration Process in Detail

8.2.2.1

Before any analysis, I assume that the use cases are already developed for the system that

Use Case Development

will be analyzed, but at this level the use case can be in an abstract form where only the

133

use case objective and the authorized actors are defined. Figure 8.1 shows an example of

a use case in such an abstract view,

8.2.2.2 Applying AuthUML at the Use Case Level

Because only the abstract use cases are developed at this time, only the first and second
phases of AuthUML are applied. This stage analyzes the authorization requirement of the
use casc and ensurcs that they arc consistent, complete and free of application-specified
conflicts. The finalized authorizations produced by this stage are in the form of d0,,(Xs,
+X,0). This outcome will be used in the FlowUML to validate the correctness of the

sequence diagram from the point of view of authornization of information flow.

8.2.23 Sequence Diagram Development

After the use cases are developed at the abstract level, the next step is to develop the
details of each use case by identifying the operations and the information flow between
them. Such details are represented by onc of the interaction diagrams type. For my work,
I choose sequence diagrams. Figure 8.2 shows an example of a sequence diagram of a
Prepare order use case. Every use case in Figure 8.1 is represented in a sequence
diagram that shows all operations of a use case and how they interact with objects.
8.2.24 Applying FlowUML

FlowUML extracts the information flow between objects within a use case and between
use cases to validatc the enforcement of information flow control policies and to ensure
that every flow is safe. Also, FlowUML identifies all operations that are part of a use

case. Notc that at this stage both coarse and fine-grain policies apply. However, because

134

the third phase of AuthUML addresses the operation level access content, I choose to

demonstrate only the analysis of fine-grain policies of FlowUML.

After extracting the information flow from the scquence diagram, the original FlowUML
needs to detect all derived (implicit) authorizations of all actors from the actor hierarchy.
Howcver, because AuthUML has alrcady derived those authorizations at the second
stage [can derive the inherited authorized information flow by using the finalized
authorization predicates produced by AuthUML. The following rules show how to denve

inherited information flow using AuthUML predicates.

FIOWatt(XSXatt»Xobj,X’oijt,Xuc,Xop) «— dovc(Ks+Xue),
Flow (X s X au Xow: X objpX tr X e X op.) (7D

Flowabt(XsXaht.»XSsX1obj,XtKuc,Xop)(_ doye(Xe+Xue), IN(Xs, X7s) (8)
FloWaet (G s Katt X s utp 2 1 e X op.) 8

F]-OWatt(XsXatthijthXchop)f— dope(Ket+Kue), IN(Xs, X7)

(9
FlOWatt(X’S.Xattxobj,X”s.Xt,Xuc,Xop)
Note that the inherited authorization was first derived during the first phase of AuthUML

then finalized in the form of Aoy (X +X) at the end of that phase.

The previous rule states that, if there is an actor who is authonzed to mvoke a usc case
and there is a flow of an operation that 1s part of the same use case and it 1s imitiated by
any actor (not necessary the same actor of the use case), there will be a new flow
predicate that states that the authorized actor of the use case will be authornized to initiate
the same flow of that operation. For example, the Prepare order use case in Figure 8.1

has several opcrations as shown in Figure 8.2. The operation readfartl) is extracted as:

135

Flow,;(Clerk, att;, Clerk, Obj;, 1, “Prepare order”, read) (10)

Given that the Purchasing officer has an implicit authorization to invoke the Prepare

order because s'he is a specialized actor of Clerk, AuthUML authorization is written as:

doyc(*Purchasing officer”+ “Prepare order”) an

Thus, by combining predicates 10 and 11, the Purchasing officer will also be authorized

to initiate the read operation that is written as:

Flow . (“Purchasing officer”att,“Purchasing officer”,0bj,, 1,

12
“Prepare order”,read) (12)

From the collaboration prospective, FlowUML identifies all operations of the use case
and presents it as an instance of the F10War (X s, Xate: Xonp X objr Xt XueXop.)-
FlowUML provides data to AuthUML that allows the validation of more access control

policics, that were not available without FlowUML. I show some examples as follows:

Access Control List (ACL) of each operation: It enumerates ail allowed actors who can
access a particular operation.
ACL(X o Xop)e Flowa(Ko XKauw Kooy X onj Xt Xop)

ACL(Ka,Xop)F Flowau(Xa.Xate, Xo bjaX,obj,Xthp); isActor (Xobj)

All information received by an actor: It lists all attributes that may flow to a particular

(13)

actor. For example, it states whether an actor may receive the trade secret attribute.

re CLiSt(Xa,Xatt)(—fmalFlDWatt,(Xa,Xat,t,,Xobj,X'obj,Xt),iSAGtOP(X’Obj) (14)
All information sent by an actor: It lists all attributes that an actor may send. For
example, it states whether an actor may write/modify the salary.

sentList(Xa XattXobj)«finalFlowatt(Xa,Xatt, Xobj X obj,Xt), (15)
isActor(Xobj)

136

8.2.2.5 Applying AuthUML at the Operation Level
At this stage, AuthUML 1s applied again, but at the operation level. Although, the flow

between objects is safe after applying FlowUML, the derived information may violate the
operation level authorizations. Thus, AuthUML 1s applied at the last phase to ensure

consistent, complete and conflict-free authorizations at the operations level.

Because transformation from FlowUML to AuthUML (phase 3) provides all the
operations of use cases, the transformation eliminates the first step in phase 3 of the
original AuthUML that derives authorizations of all operations of a use cases. This
transformation follows rule 16.

dercandoop(X +Xop) Floway, (Xa, Xart, Xoop X'obp Xtn Xy Xop) (16)
The previous rule says that, if there is a flow that is a part of an operation op and it is
initiated by an actor 4, there is a positive authorization of actor 4 to invoke op. For
example, consider the Prepare order use case which was shown in Figure 8.2 and written
in FlowUML in the form of FIOWH_t,t,(XaXa_tt,Xobj,X,Dbj,Xt,Xuc,Xgp) predicate as in 6.
Note that the Flow ¢t predicate specifies the use case and the operations that are affected
by the flow. Thus, from that attribute of FloWgs; , I can deduce the operations of use
cases. The following are the results of applying rule 16 based on the predicates in 6.
dercandogp(Clerk, read)«Flow..(Clerk, att,, Clerk, Obji, 1,

“Prepare order”, read)

dercandoqp{Clerk, write)« Flow..Clerk, atts, Clerk, control, an
3, “Prepare order”, write)
dercandoep(Clerk, call }«-Flow,;(Clerk, atts, control,

Inventory staff, 4, “Prepare order”, call)

137

In addition, rule 16 will be applied to any derived information flow. In the following rule,

the body is already derived from rules 7, 8 and 9:

dercandoqp{Purchasing officer, read)« Flow.,(Purchasing as)
officer, att,, Clerk, Obj, 1, “Prepare order”, read)

AuthUML considers positive and negative authorization, while FlowUML considers only
positive flows. The previous rule transforms only the positive authorization. However, a
workaround is possible to derive negative authorization to operations, as shown in rule
19. The rulc says that for every flow that is part of an operation and where that operation
is part of a use casc and there 1s an actor who has a ncgative authonization to that use
case, | can deduce that there is a negative authorization for the same actor to invoke the
operation. In another words, I refer to the flow predicate mercly to know which operation
1s part of the use case that has a negative authorization for that actor. For example, in the
runming example in Figure 8.1, there is a negative authorization for Manager to invoke
use case Write check. This ncgative authorization is written as doyc(Manager.—
“Write check™). Suppose there is a flow inside that usc case written as Flow,,(Clerk,
att;, Obj;. Objs, 1, “Write check” issue). Thus, I can deduce from the two available
predicates that the Manager cannot invoke operation issue.

dePC&ndoOP(X’a,"Xap)(— Flowatt (Xa, Xat.t.s Xobj, X,obj, Xt, Xuc, ch)a 9)
(1
dOUC(X,aw_Xuc)

138

8.3 The Flexibility of AuthUML and FlowUML

Both AuthUML and FlowUML analyze the requircment specification and ensure the
proper compliance with both access and flow control policies. However, this is not the
total advantage of both frameworks because they are also designed with flexibility in
mind. The flexibility is achieved in three ways. Furst, by iransforming UML geometries
(use case and sequence diagram) into a set of logic-based predicates, the predicates
provide flexibility becausc they are potentially amenable to automated reasoning that is
useful in analysis [Rus01] [NE0O]. Second, by transforming the policies from text-based
to a set of Prolog-style rules, this allows the enforcement of policies and the validation of
requirements against policies to be applicable and less complicated, Third, flexibility is
achieved by 1solating the requirement specifications — that are written in predicates —
from the policies — that is written in rules. The isolation is the core flexibility of the
frameworks that allows the application of different polices for each portion of the

requirements.

Figure 8.6. Hlustration of the isolations and flexibly of the frameworks. The figure
consists of three columns. The first column represents the geometry of UML that 1s used
in my frameworks (the use case and the sequence diagram). First, each abstract usc case
is instantiated by a sequence diagram to illustrate the information flow of the use case.
Second, the sequence diagram can be used to identify the required opcrations of each use

casc.

139

In the second column, it transforms the requirements expressed in UML into predicates.
First, it transforms the authorization of each use casc or group of use cases into
AuthUML predicates. Such transformed authorization can be scparated into groups or
combined together; groups are desired to apply different policies or to validate different
policies to each group. For example, on¢ can apply strict policies on sensitive use cases,
while applying less restrictive policies on public-use use cases. Second, the scquence
diagram of each use case is transformed into FlowUML predicates. The same applies
here concerning whether to separate cach use case flow or to combine all them together
to crcatc a broader analysis. Third, the authorization of operations is transformed to

AuthUML predicates. Also, the decision of combining predicates can be made here.

UML Geomelnes

hUMI_ and FlowlUML predicates

i _ o

7 UsaCases

Jse Cases

kl:‘ . Use Cases

Abstract use cases

=)
kil
=
]
o
=

Transtorm

Transtorm

— .
Z] |
S
ey

i

\

Each use case is instantiated
a sequence diagram

_|

\

Tr
<Idenmy‘mg Operations ‘| -
|

@
[yl
a
£
173

us

op Op Op

Each sequence diagram identifies
the operations of the use case

— Transfarm

Transtorm

N

a sel ol | >hirales rapresent
ne aut 12 1.0 10 of use cases
4
A S dereand
e, oee

- -

a sat of predicates reprasenl

e authorization of use cases

Ex. ecande,, dercard,
da, .etc

4 sel ol pioe Csles rprasent
e intamans 1 2 w o aingle
use Cdve

For nErw
FELETY

a sel of pram A pe reprasent
the infarmabon low of single
use Case
v booa r G0 F w

LN I | B

a set of predicales regresent i
the authorizahon of 0peratons
:
Bx eando,, dercand,,
do,, -ete

a set of predicates represent
the authorization of operations
£x cando,, dercand,,
doup .ete

——

140

Various policies

' ™

Propagation policies

Inconsistencies
resolution policies

N\ N)

\ \ Dacision making

Y policias
—_——

! Use case conflict

: podices |

Idanutying fiow
pobcras

Intomalbion fow
control pohicies

Qperabon
IDCON SIS 18NCY
resolution pohoes

Coeration conflict
policias
. __

Figure 8.6. The Comprehensive Scope of Applying AuthUML and FlowUML

The third column of Figure 8.6, shows the various policies that are written in Prolog-style

rules. As shown in the figure, a policy can be applicd to any portion of the requirements

that are specified in predicates in the sccond column. Also, each portion of the

requircments can be enforced or validated by different policies. For example, one can

141

apply the negative takes precedence policy in case an inconsistency occurs in just one
portion, while applying another policy for other requirements. Note that the policies in
the third column consist of two types. The first type will be used to validate the
compliance of requirements, ¢.g., Mandatory Access Control (MAC) or Discretionary
Access Control (DAC) policies. The second type is enforced in the analysis process, e.g.,

whether to apply the permission take precedence or the negative takes precedence.

This separation of policy from the application has many consequences. The first
conscquence 15 that it facilitates applying any policy to any design. The second
consequence is that the same process can be used to check the consistency of two design
diagrams with respect to a given security policy. That is, if two design diagrams are
compliant with a given policy, as far as that policy is concemned, they are
indistinguishable. I developed this concept further in designing a notion of policy-based
equivalence of design diagrams in UML. The third consequence is that, if UML policies
can be separated from designs as shown here, a policy composition framework for UML
along the lines of [BCVS00],[WJ02] can be developed. The last consequence 1s that, by
capturing more rules related to geometry of sequence diagrams, one may be able to
capturc deficiencies in the diagrams. If successful, this may lead to a policybased, reverse

engineering framework for UML diagrams.

8.4 Conclusion

In this chapter, I showed how access and flow control policies can be verified during the

software development process. I showed how to improve the analysis of both policies by

142

combing two existing frameworks (AuthUML and FlowUML). Such collaboration
provides a more accurate analysis of access and flow control policies. FlowUML
provides rich information about the authorizations details that are provided to AuthUML
and were unavailable without FlowUML. Also, AuthUML analyzed abstract
authorizations before analyzing the information flow, and analyzed the details of
authorizations after the information flow is analyzed by FlowUML. I defined the process
of collaborating both AuthUML and FlowUML and the necessary rules to transform the
output of cach framework to the other. [also showed how those two frameworks can

provide the flexibility and scalability to enforce sccurity policies.

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Incorporating Access and Flow Control Policies in Requirements Engineering Ulgusll
Al Ghasbar, Khaled. S ool aioll

Wijesekera, Duminda(Super.) RVICY IROPS -7

1998 roS>Maodl g,

x>0 (S ,49 ‘8990

1-155 olxaall

618333 :MD 3,

&ol> Jlw, ' Sgizeol| g9

English azll

olyeiSs> alluw, rauodell a>)all

George Mason University rasol=dl

Volgenau School of Engineering adsll

a,S5,0V b3zl LVl :égoll

Dissertations 10logleoll aclgd

Olzo,dl colowll dwaid Sl (Jaogll coldlnioll :&eolg0
https://search.mandumah.com/Record/618333 ol

abge=o Jga=ll guo> .@nglaioll Hl> 2019 ©
plaziwlW 8sloll 0is aclb of Jrozs liSay .abbgazen il Dgéi> Rao ol lade ol Dgié> olesl go &dgell Syl (ale sy a>lio dslall 0in
s ol il Bgas> Llsol oo wsdas 2usai Uss (g SIVI ol iVl g8lge Jio) @liwg i jue il of Jusmdl of guwill gioyy aid suasell
.aoghioll

www.manharaa.com

https://search.mandumah.com/Record/618333

Chapter 9

CONCLUSION

This chapter summarizes my contributions, in section 9.1, and possible future extensions

of this dissertation, in section 9.2.

9.1 Conclusion

Security features must be considered with other software requirements during the
software development process to improve the security of the software and to reduce the
cost of patching vulnerabilities. This disscrtation focused on integranng both access and
flow control policies during the requirements specification analysis and design phases of
the software development process. The two main themes of this dissertation are, first, to
provide unified representation and specification of both access and flow control policies
and, sccond, to provide frameworks to verify the compliance of access and flow control
requirements with the access and flow control policies.

To provide a unified rcpresentation of access and flow control policies, I extended the de
facto standard language of modeling, the UML. The advantage to extend the UML is to
ease the adoption of the extension by the software developers. The extension provides the

necessary elements and a methodology to verify and design both access and flow control

143

policies correctly. The extension focuses on static and dynamic access and flow control
policies, where other work focuses on static policies only. I believe that the extension
encourages the software analyzer to integrate access and flow control policies with other
functional requirements. I have shown how the new extension specifies and models
existing access and flow control models, such as Role-based Access Control (RBAC),
Information Flow Control for Object-Oriented Systems, and Distributed Authorization
Processor.

To provide formal verification and detection of improper access and flow control
requirements, | developed two frameworks that are based on logic programming. The
first framework, AuthUML, verifies that the access control requirements are consistent,
complete, and conflict-free. AuthUML allows the analyzer to work at two different levels
of detail, the Use Case level and the operation level, each where it is useful for the
analyzer.. The second framework I developed, FlowUML, verifies the proper
enforcement of information flow control policies at the recquirements specification phase
of UML-based designs. Also, FlowUML provides the same flexibility as AuthUML by
providing two levels of analysis. I showed how the two frameworks can be used to venfy
existing access and flow control policies, such as Separation of Duty principle,
Mandatory Access Control (MAC), and RBAC.

The final contribution was the integration of AuthUML and FlowUML to form one
framework. The integration combines the strengths of both frameworks to improve

analysis and detection violations of access and flow control policies.

145

I believe that the usage of the frameworks will improve the enforcement of access and
flow control policies because such frameworks detect violations of policies at the early
phascs of the software development process and limit them from propagating to other

phases, where the cost of detecting and solving them is amplified.

9.2 Future Work

As stated it on the section 9.1, the need to integrate security into software development is
a large-scopc goal. It requires the integration of different features of security such as
access control policies, flow control, privacy, encryption, and availability. Also, it
requires the micgration of those features in all phases of the software life cycle such as
the requirements specification, analysis, design, implementation, and testing.

I believe this dissertation has met the goal of integrating two security featurcs: access and
flow control policies. Also, it has met the goal of integrating thosc policies at the first two
phases of the software life cycle: requirements specification and analysis.

In general, there is a room for future research, for example integrating other security
featurcs during all phases of the software life cycle, or integrating access and flow control
policies with different phases.

Other UML diagrams, such as the state chart and deployment diagram, have not been
studied in this dissertation. Also, detailed analysis and representation of the separation of
duty principle with regards to software development is another research area, because
most research in the of separation of duty principle has focused on the system point of

view rather than the software point.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t ool algoll

Wijesekera, Duminda(Super.) TVICY IUUPY 73

1998 HENVWN PR

b= y9 S ,49 ‘8990

1-155 rolxaall

618333 :MD 3,

ol Jlw, rSgizeall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlaioll :&aolgo
https://search.mandumah.com/Record/618333 ol

‘ : | albgamo Sgaxll gaos Aoghiall s 2019 ©
izl bslall 04 aclb of Juoss S .abgazo sl Boi> gaox Of lale il Bgis> lsol go gdgall Syl (sle el aslio slall 0in
s ol il Bga> Lol o wlas 2urai wss (cigSIV Al of iVl g8lgo Jio) dluws oS ae il ol Jugmll ol il gioyy i aseill

ol L) fyl_i.lsl

.anghiell

www.manaraa.com

https://search.mandumah.com/Record/618333

ABSTRACT
INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING
Khaled Alghathbar, Ph.D.
George Mason University, 2004

Dissertation Director: Dr. Duminda Wijesekera

Access and flow control policies have not been well wmitcgrated into functional
specifications throughout the software development life cycle. Access and flow control
policies, and security in general, are gcnerally considered to be non-functional
rcquirements that are difficult to express, analyze, and test. Accordingly, most security
rcquirements are considered after the analysis of the functional requirements. Ignoring
non-functional requirements or paying less attention to them during the early
development process results in low-quality, inconsistent software, dissatisfied
stakeholders, and extra time and cost to rc-engineer. Therefore, integrating security with
other functional requirements as early as possible during the software life cycle improves
the security of the software and reduces the cost of maintenance.

The main focus of this dissertation is to incorporate both access and flow control policies

with other functional requircments during the requirements specification and analysis

phascs of the software development life cycle. I have developed a unified representation
language and formal verification frameworks for both access and flow control policies.
As the Unified Modeling Language (UML) 1s the de facto standard modeling language, 1
extended it with the necessary elements to represent access and flow control policies.
This extension allows software developers to model aceess and flow control policies in a
unificd way. The advantage of extending UML to incorporate access and flow control
policies is easing its adoption by sofiwarc developers. This extension addresses what
others have not addressced, such as the representation and modeling of dynamic access
and flow control policies, negative authorizations, and inherited authorizations.

In large software systems, there are a large number of access and flow control policies to
enforce; thus, inconsistent, incomplete, and conflicting sets of policiecs may be specified.
Therefore, there is nced for a formal and automated language and tools to detect
problems due to improper policies. For the analysis of access control policies, I
developed AuthUML, a framework, based on logic programming, that analyzes access
control requirements in the requirements phase to ensure that they are consistent,
complete, and conflict-free. The framework is a customized version of Flexible Access
Framework (FAF) of Jajodia ct al. and it is suitable for UML-based requirements
engineering. It analyzes access control policies at two different levels: Use Cases and
conceptual operations.

For the analysis of information flow control policies, I developed FlowUML, a logic-

based system that venifies the proper enforcement of information flow control policies at

the requircments specification phase of UML-based designs. FlowUML uses logic
programming to verity the compliance of information flow control requirements with
information flow polices. FlowUML policics can be written at a coarse-grain level orin a
finer-grain level; these two levels provide a comprehensive and wide application of
policics.

Finally, because of the overlap of access and flow control policies, I integrated the
analysis of both policics into one framework that reduces redundant process, provides

more useful analysis information, and improves overall analysis in general.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t oo gl

Wijesekera, Duminda(Super.) FVICY IOVPY 73

1998 HENVWN PR

b= ,9 S ,49 ‘8990

1-155 1olxaall

618333 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University 4ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
plaziwlW 83l 0is aclb of Jrozs Sy .albgameo il Ygé> Ran ol lale o il Dgé> olesl go &dgall Syl (sle sly a>lio 83lall 030
s ol il Bgas> Llsol o ooz zupai e (csig SVl 4yl of iVl gdlgo Jio) lyuws oI eyl of Jusmedl of duwill gioyy hid suazeil
.aoghioll

www.maharaa.com

https://search.mandumah.com/Record/618333

TABLE OF CONTENTS

Page

ABSTRACT ...iescreereneresssscssssnnssaccomsssassassrasersssssssssssnnsssssmmmnrssssnss xi
Chapter 1... .1
INTRODUCTION.ccosieerirrcmrenctinneseeesssonissnismmssmmssttsassnsssassassstsases 1
i.1 Problem Statementt ... ittt 1
1.2 Thesis STAtEIMENT ..o e e saesss s e es e saennees 1
1.3 Significance of ContributioNSccoiiiieiiiii e ceereeiessasssne e e eassenes 3
1.4 Summary of ComtributIoNS........cooivveevee et 5
1.5 Organization of the DISSEITationcooceeieiiiiiiiinie e e see et cevisere e asaranne 6
CRAPTRT 2 st irss s sss s rsn s s bsssaes et san s sans s s s s s n s e e e s RO 0 S sas s smsamanssnsseurasans 8
LITERATURE REVIEW ieeesettsesseaseanea et e b e s ae et et et anaan e s s e b e e b RA RO ESaneantes 8
2.1 Extending the UML Metamodel and Use Case Model.......ocoeeenioiiiiiereeee. 9
2.2 Analyzing Access Control Requirementscccocevevecviiiiiiiiirinninsiesnneceninans 13
2.3 Analyzing Flow Control Requir€mentsoccoooriiiinieecicneeeeescrcneaes 15
24 SUIMMNATY cetee ittt ee e et s et e e s be e b e st e eeese e e e st et e st sensetenneenneenns 16
CRAPLEE 3 ettt itirrsesseiss st s b b rr bbb b s saans s s re b e b s bR AR RS SR e P nmanin 17
BACKGROUNDcccivverenn 17
3.1 Unified Modeling Languageo.ooiirieeeieieieinee e 17
3.1.1 Overview of the UML ... e 18
312 USC S8 ettt ettt h e as s et e ennes 19
3.1.3 Sequence DHAZIAMcco oot eeete e e e ae e sae e ene e raea 22
314 Object Constraint Languageooooeiciereeeeeceee e erine e errer e 23

3.2 Flexible Authorization Framework...........oc.....oooiiiiiiiiviieeeee e esir e 24
3.3 Access CONMTOL POLICIES L.oviiiiiiiiii et een e 25
33.1 Discretionary Access CONolo 26
332 Mandatory Access Controlcoo.ccvviiiiiiiiiiieniee e 26
333 Role-based Access COntIol ... 27
CRAPLET 4 o..rrcrererressesnsssnssnssnnesasasansssisstssnesssssssessnsssseassssssssssesssossestsssssssssnsassssnesss spasssnases 29
EXTENDING THE UML METAMODEL........ 29
41 Running EXample. .o ittt 30
4.2 Extension to the Metamodel of UML .. eeree e 32

4.2.1 Security Policy Constraints.........ooovooiiiiiiieeieereriseeeeee e eeaieereeesrs e sneees 33

vi

422 HISTOTY LOGS. oottt 36
423 BUsSineEss TasKS .ee.ioviiiriiieeieei ettt ettt et sb et s e 36
4.2.4 COMITICES 1ttt s n e 37
425 Interactions between SPCs, History Logs and Business Tasks 37
426 Enforcing Access Control Constraints........ocovvicerescecinerceeeneassacccernn e 38

4.3 Applying the New Extension to the Running Example.........occv 39
4.4 Case Study of Existing Security ModClsccooimimciiiie e 43
44.1 Role-based Access Control Metamodel.............ooooviceiiioiiieceieeeee e 43
442 WOTKFIOW POJICICS oot 45
4.4.3 Representing Distributed Authorization Model.................co 48

4.5 CONCILISIONScvtivie sttt ottt ste et b et e en bt et b es e e s e s e E e sb e bt sbanbese b e s esesnnnnes 51
Chapter 5ccceuees . . 52
EXTENDING THE USE CASE MODEL “ 52
51 INTTOAUCTION . ..ottt en b et raneeneans D2
5.2 Running EXample... ...ttt 56
53 Formal Steps for Specifying Access Control Policies ... 57
53.1 Writing Access Control Schema 57
5.3.2 Developing an Access Control Table and Applying Propagation, Conflict
Resolution and Decision Policies on All Use Cases....coo.vvvveircvveciccinierecceneceenens 63
533 Propagating Authorizations to Operations........c...cceevviinecccecvnnnrninnnnn. 67
534 Resolving Operations Authorization Conflicts. ... 69
535 Drawing The Refined Use Case DIagram.........cooeeeveeeceiecceeicceenenenane 73

54 CONCIUSION «eeieiiiiciiiii et eere bbbt eeennnnnennnnees 1O
Chapter 6......... veeresesrreasasatrasEEEs SRR s s e e eseras s vaeantan 77
AUTHUML eeeebersasieeneest i e et e e bbbt n bt sh s se s 77
6.1 AUhUML PTOCESS cuviieiieic i cesir s e sttt e e s bt esansssaaas 78
6.2 AuthUML Syntax and SEmanticsccoeoccvveeiireereecerieseeeec e sseesaessessesassreenne 82
6.2.1 Individuals and Terms of AuthUML ... 82
6.2.2 Predicates of AuthUML ..o e 83
623 Rule of AuthUML ..ot reeneens 87
6.2.4 AUthUML SemantiCscovoivvereecceeiii e e s se e ane s 88

6.3 Phase I: Analyzing Information in Requircments Documentsceceeue 89
6.3.1 Representing AuthOrzations..........ccccvvveriiieecvrseneese e se e s 89

6.3.2 Ensuring Consistent And Conflict-Free Access Control Specifications... 91
6.4 Phase II: Applying Policies to Use Casesccovvierieiivcnincscnrnneccernnsenenens 33

6.4.1 Propagation Policies.o 93
64.2 Inconsistency Resolution Policies..............ccoi 93
6.4.3 DeciSIoN POLICIES. ...oooiiiicecccee et 95
6.4.4 Alerting the Requirements Engineer of Changes to Use Case Accesses.. 96
6.5 Phasc IIl1 Applving Policies to Operations..........cc..coceevvveeeecicereeeeereveeneeeee e 96
6.5.1 Propagating Permissions to Operationsooceiceiininicnicecccinnnn 97

6.5.2 Inconsistency Resolution for Operations..........cveeevivnineecennneevnsssececencas 97

vii

6.53 Completing Accesses for Operations..........coooeceviniinnee e 98
6.5.4 Alerting the Requirements Enginecr of Irreconcilable Conflicts ... 98
6.6 CONCIUSIONS cvivicoccciicicciieeceeecceiies et ag
CRAPLET 7 srrervriinsssssemmmsacssmnirmssssssssssssssoresnesssbbsssssnnneeeeene - asssasssssssessns 101
FLOWUML................. reesresessssassESEESERIEEIEIE SR LSRN AR ae b e RE S ES RSN S n e ss 00 101
7.1 IIFOAUCTION. ... et es et e e 101
7.2 Flow Specification in the UML ..o 103
7.3 The Running Example ... e 104
7.4 Notations and ASSUMPLIONS ..o e ee e seasaanes 106
7.4.1 Sources, Sinks and ObJect TYPCS...oovvvvvivieeeeei e 106
7.4.2 Method Names and Information FIOWS ..o, 106
7.43 Complex Message Constructs inthe UML ... 106
7.4.4 Attribute Dependencies Across Objects ... 107
7.5 Verification Process.. weevvrrervries eeeesessreareeseeannannnen 108
7.5.1 Coarse-grain Pollcy Analysm .. 109
752 Fine-grain Policy Analysis....cccccocviiiiiis i 110
7.6 Syntax and SEMANIES ..ottt ea s eb e eeian 110
7.6.1 Semantics Of FIoWUML..........ocoiivvic e 114
7.7 ApPIVINE FIOWUML ..ot te ettt 115
7.7.1 Basic Flow Predicates ... 115
7.7.2 Propagation POlICIES.....ccvom o ecte et e e e naasnaens 116
7.73 Transitive Flow POlICIES ... 117
7.7.4 Finalizing Flows... wveemresreeeneennresrresnenne 118
7.7.5 Detecting Unsafe Fiows w1th Respect to P011c1es 119
7.8 The larger scope of FIOWUML ... 122
79 CONCIUSIONS .. cctiirieeet ettt cee s e s eenae b aeean e e e e astassbesreete e s s oo eessasean 125
Chapter 8.. 126
INTEGRATING THE ANALYSIS OF ACCESS AND FLOW CONTROL
POLICIES eeeEEeeEeENNSEALILe RIS SR e s et e be LS e s ee b U s RSSSATE AT s 126
8.1 Running Example.......ir e e 127
8.2 AuthUML and FlowUML Collaboration...........ccoceeeevevereeeeciieeeecec s 129
8.2.1 Collaboration Progess oo e rerr e e ab s e srnesaeens 130
8.2.2 The Collaboration Process in Detailoooeoeeeieiiiiiiieeeeeeeeees e 132
8.3 The Flexibility of AuthUML and FlowUML.........ccccooivnriiicicieie 138
B.4 COnCRISION ...ooceiiiiiiicce s eeeeeea s nssnesaernernereennnaeenes 14
Chapter 9icenrenssssssnnnnesas sesssssensssenssvanras 143
CONCLUSION ...covnemreeccnnsnerrnsencs crstssteresasas s srs s nssaasans 143
9.1 CONCIUSION ..ottt ee e e e eee et et s et e s e s smeeneeeneebeennentes 143
952 FUTUIE WOTK oo e st 145

BIBLIOGRAPHY- U 146

viil

APPENDICES tivessrsssssrenssnesessraanannnenss s anaes 153
Pl D A OIS ettt eet e e et e e e e e e e e e eeeea e e eeeteeeraaaraaatt b retteeneeanesnreerannen 153

Table

Table 4.1.
Table 5.1.
Table 5.2.
Table 5.4.
Table 5.5.
Table 6.1,
Table 6.2.
Table 6.3.
Table 7.1.
Table 7.2.

LIST OF TABLES

Page
An Example of the SPC of the Authorize Payment Operation....................... 35
Access Control Table of The Running Example.ccovvvrviieriicceeiinnencnnee 64
Access Control Table After Applying Propagation and Decision Policies. 66
Identified OPETations.ocoiome ittt s e nerenes 69
Access Control Table for Operations.............ccovveeeiev e 69
Rulcs Defining Pradicale ...t rerree e e 88
Rules for Enforcing Propagation Policics on Subject Hierarchy..................... 94
Rules for Enforcing Inconsistency Resolution and Decision Policics............. 95
FlowUML’s Strata for Coarse-grain Policies ..o 114

FlowUML’s Strata for Fine-grain Policiesoooeioeiiiiiicccecrnres 115

LIST OF FIGURES
Figure Page
Figure 3.1. Use Case DesCriplion ..o e 21
Figure 3.2: Use Case DIABTAMoooiiiiiiii et e s e e e 21
Figure 3.3. An Example of Sequence Diagramcc.oooormirreemminrccmneceececseccceenens 22
Figurc 3.4. FAF System ArchiteCtureouoiiieeiioi i 25
Figure 3.5. Role-based Access Control Model ...t 27
Figure 4.1. Use Cases for the Purchasing Process ... cecceeseeseeseeseennense 31
Figurc 4.2. Sequencing of Purchasing Process Workflow ... 32
Figure 4.3. Security Policy Constraints’ Relationship in the Core Package..................... 34
Figure 4.4. SPC Interactions with Other Elements ..o sve s 37
Figure 4.6. RBAC Metamodelo e aaaaaaans 44
Figure 4.7. Transaction EXecution TTEE........cccvereeviriceniniiiiierreere s eaesssesssrnsssssssesneenes 47
Figure 4.8. Mctamodel for the Flexible Information Flow Control Model. 48
Figure 4.9. Distnibuted Access Control Processor Architecture SCenario.......oovevvrvennae 50
Figure 5.1. The Use Case Diagram.......55
Figure 5.2. The Role Hierarchy e .55
Figure 5.3. Format of Access Control Schemas e, .. 58
Figure 5.4. The Access Control Schema for the duthorize Payment Use Case.............. 59
Figure 5.5. The Access Control Model... - . 60
Table 5.3. Access Control Table After Applymg Propagatlon and Dec:1s1on PO]IC]CS .67
Figure 5.6. An Algonithm for Enforcing Integrity Constraint of DSOD Policics............ 72
Figure 5.7. The Relined Use Case DIagram ...t 75
Figure 6.1. AuthUML ArchiteCtUIE ..oc.ooiiiiieeeeeeie e et en e e eeeeneeennens 80
Figurc 7.2: The Sequence Diagram for Usc Cascl...ooooeeiiiiiiccieceecceiev e, 104
Figure 7.3: Sequence Diagram for Use Case 2 (fine grain)..........c.coiiiinnncan 105
Figure 8.1 Use Cases of the Purchasing Process ..ot 128
Figure 8.2 . Example of Sequence Diagram ... 128
Figure 8.4. Comprehensive AuthUML and FlowUML Collaboratlon L131
Figure 8.5. AuthUML and FlowUML Collaboration Predicates... . 132
Figure 8.6. The Comprehensive Scope of Applying AuthUML and FlowUML . 140

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t oo gl

Wijesekera, Duminda(Super.) FVICY IOVPY 73

1998 HENVWN PR

b= ,9 S ,49 ‘8990

1-155 1olxaall

618333 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University 4ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
plaziwlW 83l 0is aclb of Jrozs Sy .albgameo il Ygé> Ran ol lale o il Dgé> olesl go &dgall Syl (sle sly a>lio 83lall 030
s ol il Bgas> Llsol o ooz zupai e (csig SVl 4yl of iVl gdlgo Jio) lyuws oI eyl of Jusmedl of duwill gioyy hid suazeil
.aoghioll

www.maharaa.com

https://search.mandumah.com/Record/618333

Incorporating Access and Flow Control Policies in Requirements
Engineering

A dissertation submitted 1n partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University.

By

Khaled S. Alghathbar

B.S. King Saud Umiversity, Saudi Arabia, June 1998
M.S. George Mason University, Fairfax, VA, August 2001

Director: Dr. Duminda Wijesekera
Information and Software Engineering

Spring Semester 2004
George Mason Umversity
Fairfax, VA

ABSTRACT
INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING
Khaled Alghathbar, Ph.D.
George Mason University, 2004

Dissertation Director: Dr. Duminda Wijesekera

Access and flow control policies have not been well wmitcgrated into functional
specifications throughout the software development life cycle. Access and flow control
policies, and security in general, are gcnerally considered to be non-functional
rcquirements that are difficult to express, analyze, and test. Accordingly, most security
rcquirements are considered after the analysis of the functional requirements. Ignoring
non-functional requirements or paying less attention to them during the early
development process results in low-quality, inconsistent software, dissatisfied
stakeholders, and extra time and cost to rc-engineer. Therefore, integrating security with
other functional requirements as early as possible during the software life cycle improves
the security of the software and reduces the cost of maintenance.

The main focus of this dissertation is to incorporate both access and flow control policies

with other functional requircments during the requirements specification and analysis

phascs of the software development life cycle. I have developed a unified representation
language and formal verification frameworks for both access and flow control policies.
As the Unified Modeling Language (UML) 1s the de facto standard modeling language, 1
extended it with the necessary elements to represent access and flow control policies.
This extension allows software developers to model aceess and flow control policies in a
unificd way. The advantage of extending UML to incorporate access and flow control
policies is easing its adoption by sofiwarc developers. This extension addresses what
others have not addressced, such as the representation and modeling of dynamic access
and flow control policies, negative authorizations, and inherited authorizations.

In large software systems, there are a large number of access and flow control policies to
enforce; thus, inconsistent, incomplete, and conflicting sets of policiecs may be specified.
Therefore, there is nced for a formal and automated language and tools to detect
problems due to improper policies. For the analysis of access control policies, I
developed AuthUML, a framework, based on logic programming, that analyzes access
control requirements in the requirements phase to ensure that they are consistent,
complete, and conflict-free. The framework is a customized version of Flexible Access
Framework (FAF) of Jajodia ct al. and it is suitable for UML-based requirements
engineering. It analyzes access control policies at two different levels: Use Cases and
conceptual operations.

For the analysis of information flow control policies, I developed FlowUML, a logic-

based system that venifies the proper enforcement of information flow control policies at

the requircments specification phase of UML-based designs. FlowUML uses logic
programming to verity the compliance of information flow control requirements with
information flow polices. FlowUML policics can be written at a coarse-grain level orin a
finer-grain level; these two levels provide a comprehensive and wide application of
policics.

Finally, because of the overlap of access and flow control policies, I integrated the
analysis of both policics into one framework that reduces redundant process, provides

more useful analysis information, and improves overall analysis in general.

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING

by

Khaled S. Alghathbar
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Information Technology

Commuittee:

W AG\ /ﬂ*&\'/uk Dr. Duminda Wijesekera, Disscrtation Director

, Dr. Edgar Sibley, Committee Chairman

£ g CL‘A-— Dr. David Schum
Hepote
\ &J/L\X e e Dr. Francesco Parisi-Presicce

Dr. Stephen G. Nash, Associate Dean for
raduate Studies and Research
- / Dr. Lloyd J. Gniffiths, Dean, School of
(7&» /7 Information Technology and Lngineering

Date: Spring Semester 2004
George Mason University
Fairtax, VA

INCORPORATING ACCESS AND FLOW CONTROL POLICIES IN
REQUIREMENTS ENGINEERING

by

Khaled S. Alghathbar
A Dissertation
Submitted to the
Graduate Faculty
of
George Mason University
in Partial Fulfillment of
The Requirements for the Degree
of
Doctor of Philosophy
Information Technology

Committee:

Dr. Duminda Wijesekera, Dissertation Director

Dr, Edgar Sibiley, Committee Chairman

Dr. David Schum

Dr. Francesco Parnisi-Presicee

Dr. Stephen G. Nash, Associate Dean for
Graduate Studies and Research

Dr. Lloyd J. Griffiths, Dean, School of
Information Technology and Engineering

Date: Spring Semester 2004
GUeorge Mason University
Fairtax, VA

DEDICATION

To my parents. my wife and my son for their constant love, patience, sacrifices, support and
encouragement mar made this grear accomplishment possible.

1t

ACKNOWLEDGEMENTS

Prophet Mohammed (Peace Be Upon Him) said: “Whoever does not give thanks to the people does not
give thanks to Allah ~

First and foremost, I would like to express my deepest gratitude to Allah for his
inspiration and guidance to achicve this work.

I would like to cxpress my sincere gratitude and appreciation to my dissertation director
Professor Duminda Wijesckera, for his unlimited support and advising. He enlightened
broadways to thorough thinking and ncw bodies of knowledge.

Also, 1 convey my appreciation to Professor Edger Sibley to be the chairman of my
doctoral committee and for his invaluable guidance and encouragement. The thanks
extend to the members of my dissertation committee, Professor David Schum and
Professor Francesco Parisi-Presicee, for all their invaluable comments and suggestions.

My warmest appreciations for my wife and son here in the United States and to my
parents, brothers, sisters, ncphews, nieces and friends back in Saudi Arabia for all their

praycrs, patients, support and love that comforted me during my studies abroad.

Thanks to all my Saudi colleagues in GMU for their support and encouragement through
out my master and doctoratc degrees.

I acknowledge the financial support of Kind Saud University of Saudi Arabia during my
higher education.

- To everyone who helped me directly or indirectly -

TABLE OF CONTENTS

Page

ABSTRACT ...iescreereneresssscssssnnssaccomsssassassrasersssssssssssnnsssssmmmnrssssnss xi
Chapter 1... .1
INTRODUCTION.ccosieerirrcmrenctinneseeesssonissnismmssmmssttsassnsssassassstsases 1
i.1 Problem Statementt ... ittt 1
1.2 Thesis STAtEIMENT ..o e e saesss s e es e saennees 1
1.3 Significance of ContributioNSccoiiiieiiiii e ceereeiessasssne e e eassenes 3
1.4 Summary of ComtributIoNS........cooivveevee et 5
1.5 Organization of the DISSEITationcooceeieiiiiiiiinie e e see et cevisere e asaranne 6
CRAPTRT 2 st irss s sss s rsn s s bsssaes et san s sans s s s s s n s e e e s RO 0 S sas s smsamanssnsseurasans 8
LITERATURE REVIEW ieeesettsesseaseanea et e b e s ae et et et anaan e s s e b e e b RA RO ESaneantes 8
2.1 Extending the UML Metamodel and Use Case Model.......ocoeeenioiiiiiereeee. 9
2.2 Analyzing Access Control Requirementscccocevevecviiiiiiiiirinninsiesnneceninans 13
2.3 Analyzing Flow Control Requir€mentsoccoooriiiinieecicneeeeescrcneaes 15
24 SUIMMNATY cetee ittt ee e et s et e e s be e b e st e eeese e e e st et e st sensetenneenneenns 16
CRAPLEE 3 ettt itirrsesseiss st s b b rr bbb b s saans s s re b e b s bR AR RS SR e P nmanin 17
BACKGROUNDcccivverenn 17
3.1 Unified Modeling Languageo.ooiirieeeieieieinee e 17
3.1.1 Overview of the UML ... e 18
312 USC S8 ettt ettt h e as s et e ennes 19
3.1.3 Sequence DHAZIAMcco oot eeete e e e ae e sae e ene e raea 22
314 Object Constraint Languageooooeiciereeeeeceee e erine e errer e 23

3.2 Flexible Authorization Framework...........oc.....oooiiiiiiiiviieeeee e esir e 24
3.3 Access CONMTOL POLICIES L.oviiiiiiiiii et een e 25
33.1 Discretionary Access CONolo 26
332 Mandatory Access Controlcoo.ccvviiiiiiiiiiieniee e 26
333 Role-based Access COntIol ... 27
CRAPLET 4 o..rrcrererressesnsssnssnssnnesasasansssisstssnesssssssessnsssseassssssssssesssossestsssssssssnsassssnesss spasssnases 29
EXTENDING THE UML METAMODEL........ 29
41 Running EXample. .o ittt 30
4.2 Extension to the Metamodel of UML .. eeree e 32

4.2.1 Security Policy Constraints.........ooovooiiiiiiieeieereriseeeeee e eeaieereeesrs e sneees 33

vi

422 HISTOTY LOGS. oottt 36
423 BUsSineEss TasKS .ee.ioviiiriiieeieei ettt ettt et sb et s e 36
4.2.4 COMITICES 1ttt s n e 37
425 Interactions between SPCs, History Logs and Business Tasks 37
426 Enforcing Access Control Constraints........ocovvicerescecinerceeeneassacccernn e 38

4.3 Applying the New Extension to the Running Example.........occv 39
4.4 Case Study of Existing Security ModClsccooimimciiiie e 43
44.1 Role-based Access Control Metamodel.............ooooviceiiioiiieceieeeee e 43
442 WOTKFIOW POJICICS oot 45
4.4.3 Representing Distributed Authorization Model.................co 48

4.5 CONCILISIONScvtivie sttt ottt ste et b et e en bt et b es e e s e s e E e sb e bt sbanbese b e s esesnnnnes 51
Chapter 5ccceuees . . 52
EXTENDING THE USE CASE MODEL “ 52
51 INTTOAUCTION . ..ottt en b et raneeneans D2
5.2 Running EXample... ...ttt 56
53 Formal Steps for Specifying Access Control Policies ... 57
53.1 Writing Access Control Schema 57
5.3.2 Developing an Access Control Table and Applying Propagation, Conflict
Resolution and Decision Policies on All Use Cases....coo.vvvveircvveciccinierecceneceenens 63
533 Propagating Authorizations to Operations........c...cceevviinecccecvnnnrninnnnn. 67
534 Resolving Operations Authorization Conflicts. ... 69
535 Drawing The Refined Use Case DIagram.........cooeeeveeeceiecceeicceenenenane 73

54 CONCIUSION «eeieiiiiciiiii et eere bbbt eeennnnnennnnees 1O
Chapter 6......... veeresesrreasasatrasEEEs SRR s s e e eseras s vaeantan 77
AUTHUML eeeebersasieeneest i e et e e bbbt n bt sh s se s 77
6.1 AUhUML PTOCESS cuviieiieic i cesir s e sttt e e s bt esansssaaas 78
6.2 AuthUML Syntax and SEmanticsccoeoccvveeiireereecerieseeeec e sseesaessessesassreenne 82
6.2.1 Individuals and Terms of AuthUML ... 82
6.2.2 Predicates of AuthUML ..o e 83
623 Rule of AuthUML ..ot reeneens 87
6.2.4 AUthUML SemantiCscovoivvereecceeiii e e s se e ane s 88

6.3 Phase I: Analyzing Information in Requircments Documentsceceeue 89
6.3.1 Representing AuthOrzations..........ccccvvveriiieecvrseneese e se e s 89

6.3.2 Ensuring Consistent And Conflict-Free Access Control Specifications... 91
6.4 Phase II: Applying Policies to Use Casesccovvierieiivcnincscnrnneccernnsenenens 33

6.4.1 Propagation Policies.o 93
64.2 Inconsistency Resolution Policies..............ccoi 93
6.4.3 DeciSIoN POLICIES. ...oooiiiicecccee et 95
6.4.4 Alerting the Requirements Engineer of Changes to Use Case Accesses.. 96
6.5 Phasc IIl1 Applving Policies to Operations..........cc..coceevvveeeecicereeeeereveeneeeee e 96
6.5.1 Propagating Permissions to Operationsooceiceiininicnicecccinnnn 97

6.5.2 Inconsistency Resolution for Operations..........cveeevivnineecennneevnsssececencas 97

vii

6.53 Completing Accesses for Operations..........coooeceviniinnee e 98
6.5.4 Alerting the Requirements Enginecr of Irreconcilable Conflicts ... 98
6.6 CONCIUSIONS cvivicoccciicicciieeceeecceiies et ag
CRAPLET 7 srrervriinsssssemmmsacssmnirmssssssssssssssoresnesssbbsssssnnneeeeene - asssasssssssessns 101
FLOWUML................. reesresessssassESEESERIEEIEIE SR LSRN AR ae b e RE S ES RSN S n e ss 00 101
7.1 IIFOAUCTION. ... et es et e e 101
7.2 Flow Specification in the UML ..o 103
7.3 The Running Example ... e 104
7.4 Notations and ASSUMPLIONS ..o e ee e seasaanes 106
7.4.1 Sources, Sinks and ObJect TYPCS...oovvvvvivieeeeei e 106
7.4.2 Method Names and Information FIOWS ..o, 106
7.43 Complex Message Constructs inthe UML ... 106
7.4.4 Attribute Dependencies Across Objects ... 107
7.5 Verification Process.. weevvrrervries eeeesessreareeseeannannnen 108
7.5.1 Coarse-grain Pollcy Analysm .. 109
752 Fine-grain Policy Analysis....cccccocviiiiiis i 110
7.6 Syntax and SEMANIES ..ottt ea s eb e eeian 110
7.6.1 Semantics Of FIoWUML..........ocoiivvic e 114
7.7 ApPIVINE FIOWUML ..ot te ettt 115
7.7.1 Basic Flow Predicates ... 115
7.7.2 Propagation POlICIES.....ccvom o ecte et e e e naasnaens 116
7.73 Transitive Flow POlICIES ... 117
7.7.4 Finalizing Flows... wveemresreeeneennresrresnenne 118
7.7.5 Detecting Unsafe Fiows w1th Respect to P011c1es 119
7.8 The larger scope of FIOWUML ... 122
79 CONCIUSIONS .. cctiirieeet ettt cee s e s eenae b aeean e e e e astassbesreete e s s oo eessasean 125
Chapter 8.. 126
INTEGRATING THE ANALYSIS OF ACCESS AND FLOW CONTROL
POLICIES eeeEEeeEeENNSEALILe RIS SR e s et e be LS e s ee b U s RSSSATE AT s 126
8.1 Running Example.......ir e e 127
8.2 AuthUML and FlowUML Collaboration...........ccoceeeevevereeeeciieeeecec s 129
8.2.1 Collaboration Progess oo e rerr e e ab s e srnesaeens 130
8.2.2 The Collaboration Process in Detailoooeoeeeieiiiiiiieeeeeeeeees e 132
8.3 The Flexibility of AuthUML and FlowUML.........ccccooivnriiicicieie 138
B.4 COnCRISION ...ooceiiiiiiicce s eeeeeea s nssnesaernernereennnaeenes 14
Chapter 9icenrenssssssnnnnesas sesssssensssenssvanras 143
CONCLUSION ...covnemreeccnnsnerrnsencs crstssteresasas s srs s nssaasans 143
9.1 CONCIUSION ..ottt ee e e e eee et et s et e s e s smeeneeeneebeennentes 143
952 FUTUIE WOTK oo e st 145

BIBLIOGRAPHY- U 146

viil

APPENDICES tivessrsssssrenssnesessraanannnenss s anaes 153
Pl D A OIS ettt eet e e et e e e e e e e e e eeeea e e eeeteeeraaaraaatt b retteeneeanesnreerannen 153

Table

Table 4.1.
Table 5.1.
Table 5.2.
Table 5.4.
Table 5.5.
Table 6.1,
Table 6.2.
Table 6.3.
Table 7.1.
Table 7.2.

LIST OF TABLES

Page
An Example of the SPC of the Authorize Payment Operation....................... 35
Access Control Table of The Running Example.ccovvvrviieriicceeiinnencnnee 64
Access Control Table After Applying Propagation and Decision Policies. 66
Identified OPETations.ocoiome ittt s e nerenes 69
Access Control Table for Operations.............ccovveeeiev e 69
Rulcs Defining Pradicale ...t rerree e e 88
Rules for Enforcing Propagation Policics on Subject Hierarchy..................... 94
Rules for Enforcing Inconsistency Resolution and Decision Policics............. 95
FlowUML’s Strata for Coarse-grain Policies ..o 114

FlowUML’s Strata for Fine-grain Policiesoooeioeiiiiiicccecrnres 115

LIST OF FIGURES
Figure Page
Figure 3.1. Use Case DesCriplion ..o e 21
Figure 3.2: Use Case DIABTAMoooiiiiiiii et e s e e e 21
Figure 3.3. An Example of Sequence Diagramcc.oooormirreemminrccmneceececseccceenens 22
Figurc 3.4. FAF System ArchiteCtureouoiiieeiioi i 25
Figure 3.5. Role-based Access Control Model ...t 27
Figure 4.1. Use Cases for the Purchasing Process ... cecceeseeseeseeseennense 31
Figurc 4.2. Sequencing of Purchasing Process Workflow ... 32
Figure 4.3. Security Policy Constraints’ Relationship in the Core Package..................... 34
Figure 4.4. SPC Interactions with Other Elements ..o sve s 37
Figure 4.6. RBAC Metamodelo e aaaaaaans 44
Figure 4.7. Transaction EXecution TTEE........cccvereeviriceniniiiiierreere s eaesssesssrnsssssssesneenes 47
Figure 4.8. Mctamodel for the Flexible Information Flow Control Model. 48
Figure 4.9. Distnibuted Access Control Processor Architecture SCenario.......oovevvrvennae 50
Figure 5.1. The Use Case Diagram.......55
Figure 5.2. The Role Hierarchy e .55
Figure 5.3. Format of Access Control Schemas e, .. 58
Figure 5.4. The Access Control Schema for the duthorize Payment Use Case.............. 59
Figure 5.5. The Access Control Model... - . 60
Table 5.3. Access Control Table After Applymg Propagatlon and Dec:1s1on PO]IC]CS .67
Figure 5.6. An Algonithm for Enforcing Integrity Constraint of DSOD Policics............ 72
Figure 5.7. The Relined Use Case DIagram ...t 75
Figure 6.1. AuthUML ArchiteCtUIE ..oc.ooiiiiieeeeeeie e et en e e eeeeneeennens 80
Figurc 7.2: The Sequence Diagram for Usc Cascl...ooooeeiiiiiiccieceecceiev e, 104
Figure 7.3: Sequence Diagram for Use Case 2 (fine grain)..........c.coiiiinnncan 105
Figure 8.1 Use Cases of the Purchasing Process ..ot 128
Figure 8.2 . Example of Sequence Diagram ... 128
Figure 8.4. Comprehensive AuthUML and FlowUML Collaboratlon L131
Figure 8.5. AuthUML and FlowUML Collaboration Predicates... . 132
Figure 8.6. The Comprehensive Scope of Applying AuthUML and FlowUML . 140

Chapter 1

INTRODUCTION

1.1 Problem Statement

Today, most security requirements, such as access and flow control policics, are
considered only after the completion of functional requirements because security
requirements are considered non-functional requirements, which are difficult to express,
to analyze, and to test, and becausc languages used to specify access and flow control
policies (such as FAF [JSSSO1], PERMIS [C002], Author-X [BBC+00] and PDL
[LBN99]) are separate from the languages used to model functional requirements (such
as UML) during the softwarc development life cycle. Consequently, security
considerations may not be properly cngineered during the softwarc development life

cycle, and less secure systems may result.

1.2 Thesis Statement

Devanbu and Stubblebine [DS00] challenged the academic community to adopt and
extend standard modeling languages such as UML to include security-related features. I

accepted this challenge by showing that:

It is possible to incorporate access and flow control policies with other functional
requirements during the early phases of the software development life cycle by
extending the Unificd Modeling Language (UML) to include security featurcs as
first class citizens.

It is possible to develop tools that help software analysts and designers to verify
the compliance of the access and flow control requirements with with policy

before proceeding to other phases of the software development process.

I substantiated my claim by:

I

Extending the metamodel of UML to incorporate access and flow control
policies in the design.

Enhancing and extending the Use Case model by providing a unified
specification of access and flow control policies using object constraint
language (OCL).

Designing a formal framework to detect inconsistency, incompleteness, and
application-definable conflict among access control policies.

Designing a formal framework that verifies the compliance of information
flow requirements with information flow control policies.

Integrating both frameworks to analyze both access and flow control policies

at the same time.

1.3 Significance of Contributions

Access and flow control policies in software sccurity have not been well integrated with
functional specifications during the requirements engineering and modeling phases of the
software development life cycle. Security is considered to be a non-functional
requirement (NFR) [CNY+00]. Such requirements are difficult to express, analyze, and
test; thercfore, they are usvally evaluated subjectively. Becausc NFRs tend to be
propertics of a system as a whole [CNY+00, NE0OO],, most security requircments arc
considered after the analysis of the functional requirements [[DS00]. The consequences of
ignoring NFR arc low-quality and inconsistent software, unsatisfied stakeholders, and
more time and cost in re-engineering [CNY+00]. Therefore, integrating security into the
software life cycle throughout all its phases adds value to the outcome of the process.

It is important to specify access control policies precisely and in sufficient detail, because
ambiguities in requirements specifications can result in crroncous software [GWS89]. In
addition, careful consideration of requirements — including NFRs — will result in reducing
project cost and time, because errors that are not detected early can propagate into the
other phases of the software development life cycle, where the cost of detection and
removal is high [DS00] [Boe81]. By analyzing large projects in IBM, GTE, and TRW,
Boehm [Boe81] computed the cost of removing errors in general made during the various

phases of the development life cycle, as shown in table 1.

Table 1: Relative Cost to Correct an Error

Phase where the error is tound Cost ratio
Requirements 1
Design 3-6
Code 10
Development test 15-35
Acceptance test 40-75
Operation 30-1000

In UML-based software design methodologies, requirements are specified using Use
Cases at the beginning of the life cycle. Use Cases specify actors and their intended usage
of the envisioned system. Nevertheless, a Use Casc is written in natural language, which
lacks the precision and specification of security [DS00]. Therefore, there is a necd to
provide a unified language for representing sccurity features, such as access and flow
control policies [DS00, CNY+00], in the early phascs of the software development lifc
cycle. This language must allow software developers to model access control policics in a
unified way and it must be compatible with other requirements modeling languages.

In addition, there is a need to verify the compliances of security requirements with the
security policies before proceeding to other phases of the software development life cycle
[NEQO, Pf198, RusO1]. 1 used Logic as the underlying language beeause it is potentially
amenable to automated rcasoning [NE0O, RusO1].

My dissertation partially fulfills Devanbu and Stubblebine’s challenge [DS00], because
totally satistying their requirement has to consider all aspects of security in all phascs of

the software development life cycles. My contributions meet the challenge in the

requirements, analysis and design phases only by specifying and verifying access and

flow control policies there.

1.4 Summary of Contributions

My dissertation introduced several contributions that assist software developers to specify

and analyze access and flow control policies during the first three phases of the software

development process, requirement specification, analysis, and design phases. The
following summarize my contributions:

6. I extendcd the UML Metamodel in a way that allows systems designers to model
dynamic and static access control policies as well as flow control policies in a
unified way. The extension provides a better way to integrate and impose
authorization policies on commercial off-the-shelf (COTS) and mobile code. 1
showed how this extension allows non-security experts to represent access control
models, such as Role-Based Access Control (RBAC) and workflow policies, in an
uncomplicated manner.

7. I extended the Use Case model to specify access control policies precisely and
unambiguously with sufficient details in the UML’s Use Case. I added to Use
Cases by using something analogous to operation schemas [SS00], which I called
access control policy schemas. The extension employs the Object Constraint
Langunage (OCL) [OCLO1}, which is more formal than thc cxisting Use Case

language (natural language) for specifying access and flow control policies.

8. Ideveloped a framework called AuthUML that formally verifies the compliance
of access control requirements with the access control policies during the
requirement specification and analysis phases using Prolog style stratified logic
programming.

9. T developed a framework called FlowUML to verify the proper enforcement of
information flow control policies on the requirements.

10. T incorporated the analysis of both access and flow control requircments by
integrating both AuthUML and FlowUML. The incorporation of both frameworks
mmproves the analysis and detection of improper access and flow control
requirement.

Based on my work 1n this dissertation I published several papers.

1.5 Organization of the Dissertation

Chapter 2 summarizes the literature that is rclated to my work, it also analyzes and
compares the work with what I presented in this dissertation. Chapter 3 summarizes
background works that are used as bases for my extensions, such as the UML, FAF and
Operation Schemas. Chapter 4 presents the extension of the UML Metamodel to design
access and flow control policies, and it shows the application of the extension on
different existing access control models. Chapter 5 presents the extension of the Use Case
to formally specify access and flow control requirements, and it shows the extension of
the Use Case diagram and how to analyze the access control requirements visually.

Chapter 6 introduces AuthUML, a framework to verify and detect improper access

control requircments. Chapter 7 presents the FlowUMIL., a framework that analyzes
information flow control requirement and detects violation of information flow control
policies. Chapter 8 incorporates the analysis of both AuthUML and FlowUML and
produces a coherent framework to verify both access and flow control requirements.
Finally, summary of my contributions and discussion of future research are presented in

chapter 9.

Chapter 2

LITERATURE REVIEW

Several new papers have been published in this area; those works concentrate on different
aspects of security features and software development phases. However, there are some
drawbacks in those works that nced to be improved; further, some additional issues need
to be addressed.

There are several aspects of security that need to be integrated into the software
development process such as access control policics, flow control policies,
authentication, integrity, and encryptions. Likewise, there are different phases of software
development such as requirements specification, analysis, design, implementation, and
testing, that require security to be integrated with them for better secure software
systems.

In this dissertation, I have focused on five aspects of integrating access and flow control
policies during requirement engineering. First, I extended the UML metamodel to allow
the proper specification of access and flow control policies. Second, I extended the Usc
Case modc! to formally specify access and flow control policies. Third, 1 developed a
framework to verity the access control requirements. Fourth, I developed a framework to

verify the flow control requirements. Both frameworks detect improper access and flow

control requirements as early as possible during the software proccss. The following

scctions summarize the hteratures related to cach aspect.

2.1 Extending the UML Metamodel and Use Case Model

Lodderstedt ef al. [LBDO02] proposed a methodology to model access control policies and
integrate them into a model-driven software development process. The work was based
on RBAC as a security model. My work is differs from [LBDO02] by concentrating on
specifying dynamic access control policies (e¢.g. dynamic separation of duty) and
workflow as well as static access control policies. Furthermore, I focused on dynamic
design modecling while Lodderstedt’s focus was on static design model. Also, my
prospective view of enforcing constraints is from the flow view not tfrom the static view.
There are several i1ssues missing from the work of Lodderstedt ef al. First, history-related
constraints cannot be modeled with Lodderstedt’s method. Second, the metamoedel is not
flexible enough to model all access control policics, because it is based on RBAC only.
Third, the metamodel cannot restrict people in scnior roles from performing certain junior
operations and it cannot specify conflict among users, operations, or roles.
Fernandez-Medina et al. [FPS01] introduced a language called Object Security constraint
Language (OSCL). OSCL extends the Object Constraint Language (OCL) [WK99] to
specify security constraints to represent multi-level security systems. Also, Fernandez-
Medina et al. in [FMM+02] propesed an extension to the Use Case and Class models of
the UML. The extensions of Use Case diagram which they introduced were stereotypes:

<<safe-UC>> and <<accredited -actor>> as an indication of a secure Use Case and

authonized actor. Their work is focused on database security and shows how to model
multilevel security on the static diagram such as Class diagram by introducing tagged
values to classes, attributes, operations, and association ends wherc those tagged values
indicate the security level of the element. However, this extension did not rcpresent
dynamic authorization and workflow policies. Alsp, the cxtension was limited to
multilevel security model. Finally, the extension did not address the type of authorization
that 1s granted to the accredited actor, nor the integrity constraints associated with such
authorizations.

Brose et af. [BKLO02] extended the UML to support the automatic generation of the
access control policies to configure a CORBA-based infrastructure for view-bascd access
control. It stated permissions and prohibitions of accessing system’s objects (read, write,
gxceute...etc) explicitly by writing notes that are attached to actors in the Use Case
diagrams. However, their work was based on static specification of access policies but it
could not model dynamic access control policies such as Dyramic Separation of Duty nor
it could enforce some flow requirement such as the order of operations in a specific
workflow systems. Although, that work covered most parts of the software development
life cycle, it did not integrate access control policies in the interaction diagrams such as
the Sequence diagram, and that what I presented in this dissertation. In addition, the
specification language of that work was natural language which is imprecise. Therefore, I
used the OCL to specify the constraints more precisely. Finally, that work considered role
hierarchies, but no propagation or conflict resolution policies have been addressed for the

inherited authorizations.

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Incorporating Access and Flow Control Policies in Requirements Engineering Ulgusll
Al Ghasbar, Khaled. S ool aioll

Wijesekera, Duminda(Super.) RVICY IROPS -7

1998 roS>Maodl g,

x>0 (S ,49 ‘8990

1-155 olxaall

618333 :MD 3,

&ol> Jlw, ' Sgizeol| g9

English azll

olyeiSs> alluw, rauodell a>)all

George Mason University rasol=dl

Volgenau School of Engineering adsll

a,S5,0V b3zl LVl :égoll

Dissertations 10logleoll aclgd

Olzo,dl colowll dwaid Sl (Jaogll coldlnioll :&eolg0
https://search.mandumah.com/Record/618333 ol

abge=o Jga=ll guo> .@nglaioll Hl> 2019 ©
plaziwlW 8sloll 0is aclb of Jrozs liSay .abbgazen il Dgéi> Rao ol lade ol Dgié> olesl go &dgell Syl (ale sy a>lio dslall 0in
s ol il Bgas> Llsol oo wsdas 2usai Uss (g SIVI ol iVl g8lge Jio) @liwg i jue il of Jusmdl of guwill gioyy aid suasell
.aoghioll

www.manharaa.com

https://search.mandumah.com/Record/618333

[ABWSS]

[AS00)

[ASO1]

[AW03]

[AgW03]

[BA99]

[BBC+00]

[BCVS00]

147

BIBLIOGRAPHY

K. Apt, H. Blair, A. Walker. Towards a theory of declarative knowledge. /n
J. Minker, editor, Foundations of deductive databases, pages 89-148.
Morgan Kaufmann, San Matco, 1988.

G.-J. Ahn and R. Sandhu, Rolc-based Authorization Constraints
Spccification. ACM Transactions on Information and System Security, pages
207-226, Vol. 3, No. 4, November 2000.

G.-I. Ahn, M. Shin. Role-Based Authorization Constraints Specification
Using Object Constraint Language. In the proceedings of the Tenth IEEE
International Workshops on Enabling Technologies: Infrastructure for
Collaborative Enterprises, June 20 - 22 2001 Massachusctts.

K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic
Authorization Policics. In proc. of the International Conference on
Computer Science, Software Engineering, Information Technology, e-
Business, and Applications (CSITeA4’03), Rio de Janeiro, Brazil. June 5-7,
2003.

K. Alghathbar, D. Wijesckera. Extending the UML To Model Dynamic
Authorization Policies. In proc. of the International Conference on
Computer Science, Software Engineering, Information Technology, e-
Business, and Applications (CSITeA’03)}, Rio de Janeiro, Brazil. June 5-7,
2003.

E. Bertino and V. Atluri. The specification and enforcement of authorization
constraints in workflow management. ACM transactions on Information
Systems Security, February 1999,

E. Bertino, M. Braun, S. Castano, E. Ferrari, and M. Mesiti. Author-x: A
javabased system for XML data protection. In IFIP Workshop on Database
Security, pages 15-26, 2000.

P. Bonatti, S. De Capitani di Vimercati, P. Samarati. A Modular Approach
to Composing Access Control Policies. Proc. of the Seventh ACM

[BKLO2]

[BL75]

[Boe81]

[BRJ99]

[Bro00]

[CNY+00]

[C002]

[CW87]

[CWI03]

[DMB89]

148

Conference on Computer and Communications Security, Athens, Greece,
November 1-4, 2000.

G. Brose, M. Koch, K.-P. Léhr. Integrating Access Control Design into the
Software Development Process. In the Proceedings of the snih hennial
world conference on the Integrated Design and Process Technology (1DPT),
Pasadena, CA. June 2002.

D. Bell and L. LaPadula. Secure computer system: United exposition and
Multics interpretation. Technical Report, ESD-TR-75-306, MITRE Corp.
MTR-2997. Bedford, MA, 1975.

B. Boehm. Software engineering economics. Englewood Cliffs, NJ: Prentice
Hall. 1981,

G. Booch, J. Rumbaugh, and 1. Jacobson. The Unified Modeling Language
User Guide. Addison-Wesley, Reading, MA, 1999,

G. Brose. A typed access control model for CORBA. In F. Cuppens, Y.
Deswarte, D. Gollmann, and M. Weidner, editors, Proc. FEuropean
Symposium on Research in Computer Security (ESORICS), LNCS 1895,
pages 88-105. Springer, 2000,

L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in
Software Engineering. Kluwer Academic Publishers (2000).

D. Chadwick, A. Otenko. The PERMIS X 509 Role Based Privilege
Management Infrastructure. /n the Proceedings of the 7th Acm Symposium
On Access Control Models And Technologies (SACMAT 2002). Montrerey,
California USA. 3-4 June 2002.

D. D. Clark, D. R. Wilson. A Comparison of Commercial and Military
Computer Security Policies. /n the proc. IEEE Symposium on Security and
Privacy. 1987.

S. Chen, D. Wijesckera, S. Jajodia. FlexFlow: A Flexible Flow Control
Policy Specification Framework. In proceedings of the 17th Annual IFIP

WG 1.3 Working Conference on Database and Applications Security. Estes
Park, Colorado. August 2003.

J. Dobson, J. McDermid: A Framework for Expressing Models of Security
Policy. In the proc. IEEE Symposium on Security and Privacy. 1989.

[DS00]

[FH97]

[FHG97]

[FMM+02]

[FPSO1]

[FS99)

[FSBJ97)

[GH91]

[GH92]

[GL8S]

[Gom(0]

149

P. T. Devanbu and S. Stubblebine. Software enginecring for security:A
roadmap. In A. Finkelstein, editor, The Future of Software Engineering.
ACM Press, 2000.

E. B. Fernandcz and J. C. Hawkins, Determining role rights from use cases,
In the Procs. 2nd. ACM Workshop on Role-Based Access Control,
November 1997, 121-125.

D. Firesmith, B. Henderson-Sellers, 1. Graham, OPEN Modeling Language
(OML) Reference Manual. SIGS Books. 1997.

E. Fernandez-Medina, A. Martinez, C Medina, And M. Piattini. Integrating
Multilevel Security in the Database Design Process. In the Proceedings of

the sixth biennial world conference on the Integrated Design and Process
Technology (IDPT), Pasadena, CA. June 2002.

E. Fernadez-Medina, M.G. Piattini, M.A Serrano. Specification of Security
Constraints in UML. In the 35th International Carnahan Conference on
Security Technology (ICCST), London, UK, October 2001.

M. Fowler, K. Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language (2nd Edition), Addison-Wesley, 1999,

E. Ferrari, P. Samarati, E. Bertino, S. Jajodia. Providing Flexibility in
Information Flow Control for Object-Oriented Systems. Proc. IEEE Symp.
on Research in Security and Privacy, Oakland, Calif., May 1997, pp. 130-
140

D. Gabbay and A. Hunter. Making Inconsistency Respectable: A Logical
Framework for Inconsistency in Reasoning, Phasel - A Position Chapter,
Proceedings of Fundamentals of Artificial Intelligence Research '91, 19-32,
Springer-Verlag.

D. Gabbay and A. Hunter. Making Inconsistency Respectable: A Logical
Framework for Inconsistency in Reasoning, Phasc2. In Symbolic and
Quantitative Approaches to Reasoning and Uncertainty, 129-136, LNCS,
Springer-Verlag, 1992.

M. Gelfond, V. Lifschitzz The stable model semantics for logic
programming. In Proceedings, 5th International Conference and Symposium
on Logic Progranmuny Seattle, Wash. pp. 1070-1080. 1988

H. Gomaa. Designing Concurrent, Distributed, and Real-Time Applications
with UML. Addison Wesley, 2000

[GW89]

[JCJO92]

[7SSS01]

[Jur01]

[KPOO]

[KP03]

[Kra02]

[LBDO2]

[LBN99]

[Mye99]

[NE0O]

150

D. Gause, G. Weinberg. Exploring Requirements: Quality Before Design,
Dorset House, New York, NY (1989).

. Jacobson, M. Chnisterson, P. Jonson, and G. Overgaad. Object-Oriented
Software Engineerme 4 Use Case Driven Approval. Addison-Wesiey,
1992.

S. Jajodia, P. Samarati, M. Sapino, V. S. Subrahmanian, Flexible support for
multiple access control policies, ACM Trans. on Database Systems, Vol. 26,
No. 2, June 2001, pages 214-260.

J. Jurjens. Towards development of secure systems using UMLsec. In H.
Hussmann, editor, /n the Proceedings of 4th International Conference of
Fundamental Approaches to Software [ngineering, LNCS, pages 187-200.
Springer, 2001.

M. Koch, F. Parisi-Presicce, Access Control Policy Specification in UML,
In Proc. of Critical Systems Development with UML, satellite workshop of
UML 2002, TUM-I0208, pages 63-78, 2002.

M.Koch, F.Parisi-Presicce, Formal Access Control Analysis in the Software
Development Process, In Proc. ACM Workshop on Formal Methods in
Security Engineering (FMSE2003), Washington D.C., Oct 2003, pp. 67-76.

R. Kraft. Designing a Distnibuted Authorization Processor for Network
Services on the \Web Proc. ACM Workshop on XML Security, Fairfax,
Virginia 2002.

T. Lodderstedt, D. Basin, J. Doser. SecureUML: A UML-Based Modeling
Language for Model-Driven Security. In the proceedings of the 5th
International Conference on the Unified Modeling Language, Dresden,
Germany. P ages 426-441. Springer, October 2002,

J. Lobo, R. Bhatia and S. Naqvi. A Policy Description Language. /n Proc.
AAAIL July, 1999,

A. Myers. JFlow: Practical mostly-static information flow control. /n Proc
26th ACM Symp. on Principles of Programming Languages (POPL), pages
228--241, San Antonio, TX, January 1999.

B. Nuseibeh and S. Easterbrook. Requircments engineering: A roadmap. In
A. Finkelstein, editor, The Future of Software Engineering. ACM Press,
2000.

[NEO1]

[OCLO1]

[OMGO1]

[Pf198]

[RLK+03]

[Ros03]

[RUP04]

[Rus01]

[SA00]

[SBC+97]

[SCEY96]

[Sen02]

151

B. Nuseibeh, S. Easterbrook and A. Russo, Making Respectable in Software
Development, Journal of Systems and Software, 56(11), November 2001,
Elsevier Science Publishers.

Object Management Group. OMG Object Constraint Language Spec-
ification, Version 1.5, 2001. Atp.//'www.omg.org/cgi-bin/doc?formal/03-03-
01

Object Management Group. OMG Unified Modeling Language
Specification, Version 1.4, 2001,
http:/fwww.omg.org/technology/documents/formal/uml him.

S. Pfleeger. Software Engineering:Theory and Practice. Prentice-Hall.
1998.

I. Ray, N. Li, D. Kim and R. France, Using Paramcterized the UML to
Specify and Compose Access Control Models, Proceedings of the Sixth
IFIP WG 11.5 Conference on Integrity and Control in Information Systems,
Lausanne, Switzerland, November 2003.

Rational Rose. http.//'www.rational. com.2003.

Rational Software Corporation, Rational Unified Process.
http://www.rational com/products/rup/index.jsp. 2004

J. Rushby. Security Requirements Specifications: How and What? In the
proceedings of Symposium on Requirements Engineering for Information
Security (SREIS). Indianapolis, IN. March, 2001.

M. Shin, G.-J. Ahn. The UML-based Representation of Role-based Access
Control. In Proceedings of the 5th IEEE International Workshop on
Enterprise Security (WETICE 200()), NIST, MD, June 14-16, 2000.

P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information flow
control in object-oriented systems. IEEE Transactions on Knowledge and
Data Engineering, 9(4):524-538, July-Aug. 1997.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. IEEE Computer, 29(2):377, 1996.

S. Sendall. Specifying Reactive System Behavior, Ph.D. thesis, Swiss Fed-
eral Institute of Technology - Lausanne (EPFL), May 2002

[SS00]

[SS94]

[SZ97]

[WK99]

[WJ102]

152

S. Sendall, A. Strohmeier: From Use Cases to System Operation Spec-

ifications. In the conference of the Unified Modeling Language conference,
2000.

R. Sandhu and P. Samarati. Access Control: Principles and Practice. /EEE
Comm., Vol. 32, Num. 9, September 1994,

R. Simon, M. Zurko. Separation of duty in role-based environments. /n the
Proceedings of the 10th Computer Security Foundations Workshop,
Rockport, MA, June, 1997.

J. Warmer, a. Kleppe. The Object Constraint Languave Precise Modeling
with UML. Addison Wesley, 1999.

D. Wijesekera, S. Jajodia, Policy Algebras for Access Control -The
predicate Case, Proc. 8th ACM Conference on Computer and
Communications Security, Washington, DC, November 17-22, 2002, pages
171-180.

http://www.tcpdf.org

o o iingliiall jla
. DAR ALMANDUMAH

Apa M hay L all o cigp 82 alg. T

Incorporating Access and Flow Control Policies in Requirements Engineering Ulgusll
Al Ghasbar, Khaled. S ool aioll

Wijesekera, Duminda(Super.) RVICY IROPS -7

1998 roS>Maodl g,

x>0 (S ,49 ‘8990

1-155 olxaall

618333 :MD 3,

&ol> Jlw, ' Sgizeol| g9

English azll

olyeiSs> alluw, rauodell a>)all

George Mason University rasol=dl

Volgenau School of Engineering adsll

a,S5,0V b3zl LVl :égoll

Dissertations 10logleoll aclgd

Olzo,dl colowll dwaid Sl (Jaogll coldlnioll :&eolg0
https://search.mandumah.com/Record/618333 ol

abge=o Jga=ll guo> .@nglaioll Hl> 2019 ©
plaziwlW 8sloll 0is aclb of Jrozs liSay .abbgazen il Dgéi> Rao ol lade ol Dgié> olesl go &dgell Syl (ale sy a>lio dslall 0in
s ol il Bgas> Llsol oo wsdas 2usai Uss (g SIVI ol iVl g8lge Jio) @liwg i jue il of Jusmdl of guwill gioyy aid suasell
.aoghioll

www.manharaa.com

https://search.mandumah.com/Record/618333

APPENDICES

Publications

The contributions of this dissertation have been published/ in submission in several

international referred conferences and journals. The following lists those publications:

1. K. Alghathbar, D. Wijesekera. Analyzing Flow Control Policies in Requirements
Engineering. In the Proc. of the IEEE 5th International Workshop on Policies for
Distributed Systems and Networks. Yorktown Heights, New York. June 7-9,
2004,

2. K. Alghathbar, D. Wijesekera. Incorporating Access Control Policies in
Requirements Engineering. Journal of Computer and Information Science (1JCIS).
vol. 5, no. 3, Mar. 2004,

3. K. Alghathbar, D. Wijesekera. authUML: A Three-phased framework to analyze
access control specifications in Use Cases. In proc. of the Workshop on Formal
Methods in Security Engineering (FMSE), Washington, DC. October 2003. ACM
Press.

4. K. Alghathbar, D. Wijesckera. Consistent and Complete Access Control Policies in
Use Cases. In proc. of the 6th International Confercnce on the Unified Modeling

Language (UML’03), San Francisco, CA. October 2003.

153

154

5. K. Alghathbar, D. Wijesekera. Modeling Dynamic Role-based Access Constraints
using the UML. In proc. of the 1st International Conference on Software Engineering
Research & Applications (ICSERA’03), San Francisco, CA. June 2003.

6. K. Alghathbar, D. Wijesekera. Extending the UML To Model Dynamic Authorization
Policies. In proc. of the Intemational Conference on Computer Science, Software
Engincering, Information Technology, e-Business, and Applications (CSITeA’03),

Rio de Janeiro, Brazil. Junc 5-7, 2003.

[55

CURRICULUM VITAE

Khaled S. Alghathbar was born on September 26, 1976, in the Kingdom Saudi Arabia
and 1s a citizen of Kingdom of Saudi Arabia. He received the B.S. in Information
Systems from King Saud University, Saudi Arabia, in 1998 and the M.S. in Information
Systems from George Mason University, Fairfax, VA, in 200]1. During 1998-1999, he
was a teacher assistant in the College of Computer Science and Systems in King Saud
University, Saudi Arabia. He received the following certificates from George Mason
University: Information Systems Security, Electronic Commerce, Information
Engineening and Softwarc Engineering. In addition, he is a Ceruficd Information Systems
Sccurity Professional (CISSP), Microsoft Cerified Systems Engincering in Secuirty
{MCSE: Security) and a certified CompTIA Security+.

http://www.tcpdf.org

‘e o* inghiall)l

4 DARALMANDUMAH

Aipadl Shag Loa Ll o cig B sy 10

Incorporating Access and Flow Control Policies in Requirements Engineering 1Ulgusll
Al Ghasbar, Khaled. S t oo gl

Wijesekera, Duminda(Super.) FVICY IOVPY 73

1998 HENVWN PR

b= ,9 S ,49 ‘8990

1-155 1olxaall

618333 :MD 3,

&zol> Jlw, ' Sgizall g9

English :axlll

ol,9:8> allw, ragolell a)all

George Mason University 4ol

Volgenau School of Engineering ra sl

a,S5,0V| 8350l WLVl :égll

Dissertations 1logleoll aclgd

Olzo,dl (olowll dcwaid Sl (Jaogll coldlnioll :&aolgo
https://search.mandumah.com/Record/618333 ol

abga=o Jgs=ll gro> .dnglhioll jls 2019 ©
plaziwlW 83l 0is aclb of Jrozs Sy .albgameo il Ygé> Ran ol lale o il Dgé> olesl go &dgall Syl (sle sly a>lio 83lall 030
s ol il Bgas> Llsol o ooz zupai e (csig SVl 4yl of iVl gdlgo Jio) lyuws oI eyl of Jusmedl of duwill gioyy hid suazeil
.aoghioll

www.maharaa.com

https://search.mandumah.com/Record/618333

Incorporating Access and Flow Control Policies in Requirements
Engineering

A dissertation submitted 1n partial fulfillment of the requirements for the degree of
Doctor of Philosophy at George Mason University.

By

Khaled S. Alghathbar

B.S. King Saud Umiversity, Saudi Arabia, June 1998
M.S. George Mason University, Fairfax, VA, August 2001

Director: Dr. Duminda Wijesekera
Information and Software Engineering

Spring Semester 2004
George Mason Umversity
Fairfax, VA

http://www.tcpdf.org

